Menschliches Venendiagramm

Die Venen sind Blutgefäße, die venöses Blut von Organen und Gewebe zum Herzen tragen. Ausnahme sind die Lungenvenen, die das arterielle Blut von der Lunge in den linken Vorhof befördern. Die Kombination von Venen bildet das Venensystem, das Teil des Herz-Kreislaufsystems ist. Das Netz der Kapillaren in den Organen geht in kleine Postkapillaren oder Venulen über. In beträchtlichem Abstand behalten sie immer noch eine ähnliche Struktur wie Kapillaren, haben aber ein breiteres Lumen. Venulen gehen in größere Venen über, verbinden sich mit Anastomosen (siehe) und bilden venöse Plexus in oder in der Nähe von Organen. Venen werden aus den Plexi gesammelt, die Blut aus dem Organ transportieren.

Es gibt oberflächliche und tiefe Adern. Die oberflächlichen Venen befinden sich im subkutanen Fettgewebe, ausgehend von den oberflächlichen Venennetzen; ihre Anzahl, Größe und Position variieren stark. Tiefe Venen, beginnend an der Peripherie der flachen tiefen Venen, begleiten die Arterien; Oft wird eine Arterie von zwei Venen ("Venen-Satelliten") begleitet. Durch den Zusammenfluss der oberflächlichen und tiefen Venen bilden sich zwei große venöse Stämme - die obere und die untere Hohlvene, die in den rechten Vorhof fließen, wo auch der gemeinsame Fluss der Herzvenen, der Koronarsinus, fließt. Pfortader (siehe) trägt Blut aus ungepaarten Bauchorganen.

Die Wand der Vene besteht aus drei Membranen: inneres - Endothelial -, mittel - muskulöses und äußeres - Bindegewebe. Niedriger Druck und niedrige Blutflussgeschwindigkeit bestimmen die schwache Entwicklung elastischer Fasern und Membranen in der Venenwand. In einigen Bereichen werden die Wände der Vene von den Sporen der Faszien neben ihnen gehalten und bei Verletzung geklafft. Die Notwendigkeit, die Schwerkraft von Blut in den Venen der unteren Extremitäten zu überwinden, führte zur Entwicklung von Muskelelementen in ihrer Wand, im Gegensatz zu den Venen der oberen Extremitäten und der oberen Körperhälfte. An der Veneninnenwand befinden sich Klappen, die sich entlang des Blutflusses öffnen und die Bewegung des Blutes in den Venen zum Herzen hin fördern. Die Venenwand wird reichlich mit Blut, Lymphgefäßen und Nerven versorgt.

Das venöse System des Menschen


Abb. 1. Das menschliche Venensystem: 1 - v. Retromandibularis; 2 - v. facialis; 3 - v. jugularis int. Sünde. 4 - v. thyreoidea sup.; 5 - v. Jugularis ext. Sünde. 6 - v. subclavia sin.; 7 - v. brachiocephalica sin.; 8 - v. Cava sup.; 9 - v. hemiazygos (et w. intercostaies post. sin.); 10 - v. Axillaris Sünde. 11 - vv. comltantes a. brachlalls sin. 12 - v. Cephalica; 13 - v. Cava inf.; 14 - vv. Hepaticae; 15 - v. portae; 16 - v. Lienalis; 17 - v. mesenterica inf.; 18 - v. suprarenalis Sünde. 19 - v. renalis sin.; 20 - v. testicularis sin.; 21 - v. mesenterica sup.; 22 - vv. intestinales; 23 - v. iliaca communis Sünde. 24 - v. iliaca int. Sünde. 25 - v. Basilika; 26 - v. iliaca ext. Sünde. 27 - der erste teil von v. Cephalicae (v. Cephalica pollicis); 28 - der erste teil von v. Basilika (v. Salvatella); 29 - rete venosum dorsale manus; 30 - v. femoralis sin.; 31 - Plexus Pampiniformis; 32 - vv. Intercapitales; 33 - v. Saphena Magna; 34 - vv. Digitales Palmares; 35 - v. femoralis dext.; 36 - arcus venosus palmaris superficialis; 37 - v. iliaca ext. dext.; 38 - vv. Comitantes a. radialis; 39 - vv. comltantes a. Ulnaris; 40 - v. iliaca communis dext.; 41 - vv. Comitantes a. interosseae ameise; 42 - v. Testicularis dext.; 43 - v. Cava inf.; 44 - v. Mediana Cubiti; 45 - v. Basilika; 46 - vv. Comitantes a. Brachialis dext.; 47 - v. Cephalica; 48 - v. Axillaris Dext.; 49 - v. azygos (et vv. intercostaies post, dext.); 50 - v. brachiocephalica dext. 51 - v. subclavia dext.; 52 - v. jugularis int. dext.


Abb. 2. Hirnvenen: 1 - vv. cerebri superiores; 2 - v. Thalamostriata; 3 - v. Chorioidea; 4 - vv. Cerebri Internae; 5 - v. Cerebri Magna; 6 - v. Basalis; 7 - Sinus rectus; 8 - Sinus sagittalis sup.; 9 - konflues sinuum; 10 - Sinus transversus.

Abb. 3. Kopf- und Halsvenen: 1 - subkutane Venen der Parietalregion; 2 - v. Emissaria Parietalis; 3 - Sinus sagittalis sup.; 4 - vv. cerebri superiores; 5 - Sinus sagittalis inf.; 6 - v. temporalis superficialis; 7 - v. Magna Cerebri; 8 - Sinus rectus; 9 - v. Emissaria occipitalis; 10 - Sinus transversus; 11 - Sinus cavernosa; 12 - Sinus slgmoldeus; 13 - v. Emissaria mastoidea; 14 v. occipitalis; 15 - Plexus Pterygoideus; 16 - v. Retromandibularis; 17 - v. Jugularis Interna; 18 - Plexuswirbelkugeln hinten; 19 - v. Jugularis ext. 20 - v. thyreoidea sup.; 21 - v. Thyreoidea inf.; 22 - v. subclavia; 23 - v. Thoracica Interna; 24 - v. brachiocephalica sin.; 25 - v. Thyreoidea ima (Plexus thyreoideus impar); 26 - Arcus Venosus Juguli; 27 - v. Jugularis Ameise; 28 - v. facialis; 29 - v. Alveolaris Inf.; 30 - v. Buccalis (s. Buccinatoria); 31 - v. faciei profunda; 32 - v. Ophthalmica inf.; 33 - v. Ophthalmica sup.; 34 - v. supraorbital

Abb. 4. Oberflächliche und tiefe Venen der unteren Extremität (Vorderansicht): 1 - v. Femoralis; 2 - v. Saphena Magna; 3 - v. Poplitea; 4 - vv. Tibiales Ameise; 5 - rete venosum dorsale pedis; 6 - v. Saphena Parva.

Abb. 5. Oberflächliche und tiefe Venen von Bein und Fuß (Rückansicht): 1 - v. Poplitea; 2 - v. Saphena Parva; 3 - rete venosum plantare.

Abb. 6. Äußerer und innerer vertebraler (venöser) Plexus [Plexus vertebrales (Venosi)] ext. et interni).

Venensystem

Das menschliche System Das große System des großen Kreises belebt das Blut im Herzen des Gewebes. Dieses Blut verwandelt sich durch Licht, angereichert mit Sauerstoff und gelangt in das System eines großen Kreises.

Ein falsches System führt Blut aus dem Körpergewebe im Herzen des Körpers zurück. Das Blut wird durch Sauerstoff aus dem Körper entfernt und durch die Lungenvenen zum Herzen zurückgeführt.

Die Venus beginnt mit kleinen Venen, entzündetem Blut aus Kapillaren. Außerdem bilden die Venen, die miteinander verschmelzen, größere Gefäße, während sie nicht die beiden Hauptvenen des Körpers bilden - die Venen im oberen und unteren Boden. Diese beiden Venen führen das Blut im Herzen. Etwa 65% des gesamten Blutvolumens wird in einem herkömmlichen System gespeichert.

UNTERSCHIEDE DES VENOSYSTEMS

Das große System eines großen Kreises in einem ähnlichen analogen arteriellen System. Es gibt jedoch einige wichtige Unterschiede.

Die Wände des Hofes - an den Wänden sind die Wände dicker als die der Wen, da es Arterien mit erhöhtem Wachstum gibt.
Tiefe - die meisten Arterien liegen tief im Körper und schützen sie so vor Schäden.
Das Netzhautsystem - das Blut, das vom Darm in die Venen des Magens gelangt - kehrt nicht immer zum Herzen zurück. Es legt die Ader der Adern des Systems, das durch das Blut der Kirche geht.
Unterschiede - wenn das Muster der Arterien eines großen Kreises für alle Menschen praktisch gleich ist, ist die Venus des großen Kreises unterschiedlich.

Krampfadern weisen erweiterte oder verdrehte Wirbelvenen auf. Abweichung durch Ventildefekte Wen.

Schema des menschlichen Herzkreislaufsystems

Die wichtigste Aufgabe des Herz-Kreislauf-Systems ist die Versorgung der Gewebe und Organe mit Nährstoffen und Sauerstoff sowie die Entfernung von Stoffwechselprodukten von Zellen (Kohlendioxid, Harnstoff, Kreatinin, Bilirubin, Harnsäure, Ammoniak usw.). In den Kapillaren des Lungenkreislaufs kommt es zu einer Sauerstoffzufuhr und zur Entfernung von Kohlendioxid, und in den Gefäßen des großen Kreises tritt eine Nährstoffsättigung auf, wenn das Blut durch die Kapillaren des Darms, der Leber, des Fettgewebes und der Skelettmuskulatur strömt.

Das menschliche Kreislaufsystem besteht aus Herz und Blutgefäßen. Ihre Hauptfunktion besteht darin, die Bewegung des Blutes durch Arbeiten nach dem Prinzip der Pumpe sicherzustellen. Mit der Kontraktion der Herzkammern des Herzens (während ihrer Systole) wird das Blut aus dem linken Ventrikel in die Aorta und aus dem rechten Ventrikel in den Lungenrumpf ausgestoßen, worauf der große und der kleine Kreislauf (PCB und ICC) beginnen. Der große Kreis endet mit der unteren und oberen Hohlvene, durch die venöses Blut in den rechten Vorhof zurückkehrt. Ein kleiner Kreis - vier Lungenvenen, durch die mit Sauerstoff angereichertes arterielles Blut in den linken Vorhof fließt.

Ausgehend von der Beschreibung fließt arterielles Blut durch die Lungenvenen, was nicht mit dem alltäglichen Verständnis des menschlichen Kreislaufsystems korreliert (es wird angenommen, dass venöses Blut durch die Venen und arterielles Blut durch die Venen fließt).

Nach dem Durchtritt durch den Hohlraum des linken Vorhofs und des Ventrikels tritt Blut mit Nährstoffen und Sauerstoff durch die Arterien in die Kapillaren des BPC ein, wo Sauerstoff und Kohlendioxid zwischen den Zellen und den Zellen ausgetauscht werden, Nährstoffe abgegeben und Stoffwechselprodukte abtransportiert werden. Letztere gelangen mit dem Blutfluss in die Ausscheidungsorgane (Nieren, Lunge, Drüsen des Gastrointestinaltrakts, Haut) und werden aus dem Körper entfernt.

BKK und IKK sind sequentiell verbunden. Der Blutfluss in ihnen kann anhand des folgenden Schemas demonstriert werden: rechter Ventrikel → Lungenrumpf → kleine Kreisgefäße → Lungenvenen → linker Vorhof → linker Ventrikel → Aorta → große Kreisgefäße → untere und obere Vena cava → rechter Atrium → rechter Ventrikel.

Je nach Funktion und Struktur der Gefäßwand werden die Gefäße in folgende Bereiche unterteilt:

  1. 1. Stoßdämpfung (Gefäße der Kompressionskammer) - Aorta, Lungenrumpf und große elastische Arterien. Sie glätten die periodischen systolischen Wellen des Blutflusses: Sie mildern den hydrodynamischen Schlag des vom Herzen während der Systole ausgestoßenen Blutes und fördern das Blut während der Diastole der Herzkammern in die Peripherie.
  2. 2. Resistiv (Widerstandsgefäße) - kleine Arterien, Arteriolen, Metarteriolen. Ihre Wände enthalten eine große Anzahl glatter Muskelzellen, durch deren Reduktion und Entspannung sie schnell die Größe ihres Lumens verändern können. Durch den variablen Widerstand gegen den Blutfluss halten Widerstandsgefäße den arteriellen Druck (BP) aufrecht, regulieren den Blutfluss des Organs und den hydrostatischen Druck in den Gefäßen der Mikrogaskulatur (ICR).
  3. 3. Austauschschiffe des IKR. Durch die Wand dieser Gefäße erfolgt der Austausch organischer und anorganischer Substanzen, Wasser und Gase zwischen Blut und Gewebe. Der Blutfluss in den Gefäßen des ICR wird durch Arteriolen, Venolen und Perizyten reguliert - glatte Muskelzellen, die sich außerhalb der Vorkapillaren befinden.
  4. 4. Kapazitiv - Venen. Diese Gefäße haben eine hohe Dehnung, die bis zu 60–75% des zirkulierenden Blutvolumens (BCC) ablagern kann und den Rückfluss von venösem Blut zum Herzen reguliert. Die Venen der Leber, der Haut, der Lunge und der Milz haben die am meisten abscheidenden Eigenschaften.
  5. 5. Shunting - arteriovenöse Anastomosen. Wenn sie sich öffnen, wird arterielles Blut entlang des Druckgradienten in die Venen eingeleitet und die ICR-Gefäße umgangen. Dies tritt zum Beispiel auf, wenn die Haut abgekühlt wird, wenn der Blutfluss durch die arteriovenösen Anastomosen geleitet wird, um den Wärmeverlust unter Umgehung der Kapillaren der Haut zu reduzieren. Die Haut ist blass.

Das IWC dient dazu, das Blut mit Sauerstoff zu versorgen und Kohlendioxid aus den Lungen zu entfernen. Nachdem das Blut vom rechten Ventrikel in den Lungenrumpf gelangt ist, wird es in die linke und rechte Lungenarterie geschickt. Letztere sind eine Fortsetzung des Lungenrumpfes. Jede Lungenarterie, die durch die Tore der Lunge geht, teilt sich in kleinere Arterien auf. Letztere werden wiederum in den ICR (Arteriolen, Vorkapillaren und Kapillaren) transferiert. Im ICR wird venöses Blut arteriell. Letzteres kommt von den Kapillaren in die Venolen und Venen, die in 4 Lungenvenen (2 von jeder Lunge) übergehen und in den linken Vorhof fallen.

BKK dient zur Versorgung aller Organe und Gewebe mit Nährstoffen und Sauerstoff sowie zur Entfernung von Kohlendioxid und Stoffwechselprodukten. Nachdem Blut von der linken Herzkammer in die Aorta gelangt ist, wird es in den Aortenbogen geschickt. Von den letzteren trennen sich drei Äste (brachiozephaler Rumpf, gemeinsame Halsschlagader und linke Subclavia-Arterien), die die oberen Gliedmaßen, den Kopf und den Hals mit Blut versorgen.

Danach geht der Aortenbogen in die absteigende Aorta (Thorax- und Bauchregion) über. Letztere ist auf der Ebene des vierten Lendenwirbels in gemeinsame Hüftarterien unterteilt, die die unteren Extremitäten und Organe des kleinen Beckens versorgen. Diese Gefäße sind in äußere und innere Hüftarterien unterteilt. Die A. iliaca externa dringt in die Femoralarterie ein und versorgt die unteren Gliedmaßen mit arteriellem Blut unterhalb des Leistenbandes.

Alle Arterien, die zu den Geweben und Organen gehen, gehen in ihrer Dicke in die Arteriolen und weiter in die Kapillaren. Im ICR wird arterielles Blut venös. Die Kapillaren gehen in die Venolen und dann in die Venen. Alle Venen begleiten die Arterien und werden als Arterien bezeichnet, es gibt jedoch Ausnahmen (Pfortader und Jugularvenen). Wenn man sich dem Herzen nähert, vereinigen sich die Venen in zwei Gefäße - der unteren und der oberen Hohlvene, die in den rechten Vorhof fließen.

Manchmal gibt es eine dritte Runde des Blutkreislaufs - das Herz, das dem Herzen selbst dient.

Die schwarze Farbe im Bild zeigt das arterielle Blut und die weiße Farbe die Vene. 1. Arteria carotis communis 2. Aortenbogen 3. Die Lungenarterien. 4. Aortenbogen. 5. Die linke Herzkammer. 6. Die rechte Herzkammer. 7. Zöliakie-Rumpf 8. Obere Mesenterialarterie. 9. Untere Mesenterialarterie. 10. Vena cava senken. 11. Gabelung der Aorta. 12. Hüftarterien. 13. Beckengefäße. 14. Die Oberschenkelarterie. 15. V. femoralis. 16. Häufige Beckenvenen. 17. Pfortader. 18. Lebervenen. 19. Arteria subclavia. 20. Vena subclavia. 21. obere Vena cava 22. V. jugularis interna.

Vorlesungen zur Anatomie / Schemen zum CCC / Schemen zum Venensystem

SYSTEM VON TOP FLOOR WIEN.

Rechte brachiozephale Vene;

Linke brachiozephale Vene;

Rechte V. arteria interna;

Rechte V. subclavia;

Vordere Yarar-Ader;

Äußere Glasvene;

Innere Brustvene;

Venen - Zuflüsse der Arterienvene:

b - submandibuläre Venen;

Venen der Brusthöhle.

Zusätzliche halbpaare Ader;

Viszerale (innere) Venen:

und - Mediastinalvenen;

in - Perikardvenen;

d - Bronchialvenen.

OBERFLÄCHE VENAS OBERE GLIEDER.

Laterale oberflächliche Vene;

Mediale oberflächliche Vene;

Die mittlere Ulnarvene (Ort der intravenösen Injektion).

TIEFE VENAS OBERE GLIEDER.

Oberflächliches venöses Fingernetz;

Tiefes venöses Fingernetz;

Palmar Fingervenen.

SYSTEM DES UNTERGESCHOSSES WIEN.

Hüftvenen;

Interne Beckenvenen;

Untere phrenische Venen;

Überlegene Mesenterialvene;

Untere Mesenterialvene;

Hodenvenen (Ovarien);

OBERFLÄCHENVENEN DER UNTEREN GLIEDMASSEN.

Große V. poplitealis;

Kleine V. poplitealis;

TIEFE MIT DEN UNTEREN GLIEDMASSEN.

Posteriore Tibiavenen;

Vordere Tibialvenen;

Menschliches Herz-Kreislauf-System

Die Struktur des Herz-Kreislauf-Systems und seine Funktionen sind das Schlüsselwissen, das der Personal Trainer benötigt, um einen kompetenten Trainingsprozess für die Stationen auf der Grundlage der dem jeweiligen Vorbereitungsgrad entsprechenden Belastungen aufzubauen. Bevor mit dem Aufbau von Trainingsprogrammen begonnen wird, muss das Funktionsprinzip dieses Systems verstanden werden, wie Blut durch den Körper gepumpt wird, wie es geschieht und was den Durchsatz seiner Gefäße beeinflusst.

Einleitung

Das Herz-Kreislauf-System wird vom Körper benötigt, um Nährstoffe und Komponenten zu transportieren sowie Stoffwechselprodukte aus dem Gewebe zu entfernen und die Konstanz der inneren Umgebung des Körpers aufrechtzuerhalten, die für seine Funktion optimal ist. Das Herz ist die Hauptkomponente, die als eine Pumpe wirkt, die Blut durch den Körper pumpt. Gleichzeitig ist das Herz nur ein Teil des gesamten Blutkreislaufsystems des Körpers, das zuerst Blut vom Herzen zu den Organen und dann von ihnen zurück zum Herzen befördert. Wir werden auch das arterielle und das venöse System des menschlichen Blutkreislaufs gesondert betrachten.

Struktur und Funktionen des menschlichen Herzens

Das Herz ist eine Art Pumpe, bestehend aus zwei Ventrikeln, die miteinander und gleichzeitig unabhängig voneinander verbunden sind. Der rechte Ventrikel treibt Blut durch die Lunge, der linke Ventrikel treibt es durch den Rest des Körpers. Jede Herzhälfte hat zwei Kammern: das Atrium und den Ventrikel. Sie können sie im Bild unten sehen. Der rechte und linke Vorhof dienen als Reservoir, aus dem das Blut direkt in die Ventrikel gelangt. Zum Zeitpunkt der Kontraktion des Herzens drücken beide Ventrikel das Blut aus und treiben es durch die Lungen- und peripheren Gefäße.

Die Struktur des menschlichen Herzens: 1-pulmonaler Rumpf; 2-Klappen-Lungenarterie; Vena cava mit 3 Überlegenheit; 4 rechte Lungenarterie; 5 rechte Lungenvene; 6-rechtes Atrium; 7-Trikuspidalklappe; 8. rechter Ventrikel; 9 untere Vena cava; 10 absteigende Aorta; 11. Aortenbogen; 12 linke Lungenarterie; 13 linke Lungenvene; 14 linker Vorhof; 15-Aortenklappe; 16-Mitralklappe; 17-linker Ventrikel; 18-interventrikuläres Septum.

Aufbau und Funktion des Kreislaufsystems

Die Zirkulation des gesamten Körpers, sowohl zentral (Herz und Lunge) als auch peripher (der Rest des Körpers), bildet ein vollständig geschlossenes System, das in zwei Kreisläufe unterteilt ist. Der erste Kreislauf treibt Blut aus dem Herzen und wird als arterieller Kreislaufsystem bezeichnet, der zweite Kreislauf bringt Blut zum Herzen zurück und wird als venöses Kreislaufsystem bezeichnet. Das von der Peripherie zum Herz zurückkehrende Blut gelangt zunächst über die obere und untere Hohlvene in den rechten Vorhof. Vom rechten Vorhof fließt das Blut in den rechten Ventrikel und durch die Lungenarterie gelangt es in die Lunge. Nachdem in der Lunge ein Sauerstoffaustausch mit Kohlendioxid stattgefunden hat, kehrt das Blut durch die Lungenvenen zum Herzen zurück und fällt zuerst in den linken Vorhof, dann in den linken Ventrikel und dann nur noch in die arterielle Blutversorgung.

Die Struktur des menschlichen Kreislaufsystems: 1-Vena cava; 2-Gefäße in die Lunge gehen; 3-Aorta; 4 untere Vena cava; 5-hepatische Vene; Vene mit 6 Portalen; 7-Lungenvene; Vena cava von 8 überlegen; 9 untere Vena cava; 10 Gefäße der inneren Organe; 11-Gefäße der Gliedmaßen; 12 Gefäße des Kopfes; 13-Lungenarterie; 14. Herz.

Ich-kleine Auflage; II-große Auflage; III-Gefäße zum Kopf und zu den Händen; IV-Gefäße zu den inneren Organen; V-Schiffe gehen zu den Füßen

Struktur und Funktion des menschlichen Arteriensystems

Die Funktionen der Arterien bestehen darin, Blut zu transportieren, das bei Kontraktion vom Herzen freigesetzt wird. Da diese Freisetzung unter ziemlich hohem Druck erfolgt, versorgte die Natur die Arterien mit starken und elastischen Muskelwänden. Kleinere Arterien, Arteriolen genannt, dienen der Blutkreislaufkontrolle und wirken als Gefäße, durch die das Blut direkt in das Gewebe gelangt. Arteriolen sind für die Regulation des Blutflusses in den Kapillaren von entscheidender Bedeutung. Sie sind außerdem durch elastische Muskelwände geschützt, die es den Gefäßen ermöglichen, das Lumen je nach Bedarf zu bedecken oder erheblich zu erweitern. Dadurch ist es möglich, die Blutzirkulation innerhalb des Kapillarsystems abhängig von den Bedürfnissen bestimmter Gewebe zu verändern und zu steuern.

Struktur des menschlichen Arteriensystems: 1-brachiozephaler Rumpf; 2-Subclavia-Arterie; 3-Aortenbogen; 4-axilläre Arterie; 5. innere Brustarterie; 6 absteigende Aorta; 7-interne Brustarterie; 8 tiefe Brachialarterie; Rückstrahlarterie mit 9 Strahlen; 10 obere epigastrische Arterie; 11 absteigende Aorta; 12 untere epigastrische Arterie; 13-interossäre Arterien; 14-Strahlarterie; 15 Ulnararterie; 16-Palmar-Handwurzelbogen; Karpalbogen 17 hinten; 18 Palmar-Bögen; 19-Finger-Arterien; 20 absteigender Ast der Arterienhülle; 21 absteigende Kniearterie; 22 überlegene Kniearterien; 23 untere Kniearterien; 24 Peronealarterie; 25 hintere Tibiaarterie; 26 große Tibialarterie; 27 Peronealarterie; 28 arterieller Fußbogen; 29-Metatarsal-Arterie; 30 vordere Hirnarterie; 31 mittlere Hirnarterie; 32 hintere Hirnarterie; 33 Basilararterie; 34-externe Karotisarterie; 35-Carotis interna; 36 Wirbelarterien; 37 Arteria carotis communis; 38 Lungenvene; 39 Herz 40 Interkostalarterien; 41 Zöliakie-Rumpf; 42 Magenarterien; 43-Milzarterie; 44-hepatische Arterie; 45-arterielle Mesenterialarterie; 46-Nierenarterie; 47-mesenteriale Arterie; 48 innere Samenarterie; Arteria iliaca 49; 50. A. iliaca interna; 51-externe Hüftarterie; 52 Umschlagarterien; 53-gemeinsame Oberschenkelarterie; 54 durchbohrende Zweige; 55. tiefe Oberschenkelarterie; 56-oberflächliche Femoralarterie; 57-Poplitealarterie; 58-dorsale Metatarsalarterien; 59-dorsale Fingerarterien.

Struktur und Funktion des menschlichen Venensystems

Der Zweck von Venolen und Venen besteht darin, Blut durch sie zum Herzen zurückzuführen. Von den winzigen Kapillaren gelangt Blut in die kleinen Venolen und von dort in die größeren Venen. Da der Druck im Venensystem viel niedriger ist als im arteriellen System, sind die Wände der Gefäße hier viel dünner. Die Wände der Venen sind jedoch auch von elastischem Muskelgewebe umgeben, das es ihnen ermöglicht, sich analog zu den Arterien entweder stark zu verengen, das Lumen vollständig zu blockieren, oder sich stark auszudehnen und in diesem Fall als Reservoir für Blut zu wirken. Ein Merkmal einiger Venen, beispielsweise in den unteren Extremitäten, ist das Vorhandensein von Einwegventilen, deren Aufgabe darin besteht, die normale Rückführung von Blut in das Herz sicherzustellen, wodurch dessen Abfluss unter dem Einfluss der Schwerkraft verhindert wird, wenn sich der Körper in aufrechter Position befindet.

Die Struktur des menschlichen Venensystems: 1-Subclavia-Ader; 2-interne Brustvene; 3-Achselvene; 4-laterale Armvene; 5-brachiale Venen; 6-Interkostalvenen; 7. mediale Armvene; 8 mittlere Ulnarvene; 9-Brustbeinvene; 10-seitliche Armvene; Cubitalvene 11; 12-mediale Vene des Unterarms; 13 untere ventrikuläre Vene; 14 tiefer Palarbogen; 15-Oberflächen-Palmar-Bogen; 16 Palmar-Fingervenen; 17 Sigma sinus; 18-externe Jugularvene; 19 V. jugularis interna; 20 untere Schilddrüsenvene; 21 Lungenarterien; 22 Herz 23 Vena cava inferior; 24 Lebervenen; 25-Nierenvenen; 26-ventrale Vena cava; 27 Samenvene; 28 V. iliaca communis; 29 durchbohrende Zweige; 30-externe Beckenvene; 31 V. iliaca interna; 32 externe Genitalvene; 33-tiefe Oberschenkelvene; 34 große Beinvene; 35. Femoralvene; Beinvene über 36; 37 Venen im oberen Knie; 38 V. poplitealis; 39 untere Knievenen; 40 große Beinvene; 41-Bein-Ader; 42-vordere / hintere Tibialvene; 43 tiefe plantare Ader; 44 venöser Rückenbogen; 45-dorsale Metacarpavenen.

Aufbau und Funktion des Systems kleiner Kapillaren

Die Kapillaren dienen dazu, den Austausch von Sauerstoff, Flüssigkeiten, verschiedenen Nährstoffen, Elektrolyten, Hormonen und anderen lebenswichtigen Komponenten zwischen Blut und Körpergewebe zu realisieren. Der Nährstoffstrom zu den Geweben ist darauf zurückzuführen, dass die Wände dieser Gefäße eine sehr geringe Dicke haben. Dünne Wände lassen Nährstoffe in das Gewebe eindringen und versorgen sie mit allen notwendigen Komponenten.

Die Struktur der Mikrozirkulationsgefäße: 1-Arterie; 2 Arteriolen; 3 Venen; 4 venules; 5 Kapillaren; 6-Zellen-Gewebe

Die Arbeit des Kreislaufsystems

Die Blutbewegung im ganzen Körper hängt von der Kapazität der Gefäße ab, genauer von ihrem Widerstand. Je niedriger dieser Widerstand ist, desto stärker steigt der Blutfluss an, je höher der Widerstand, desto schwächer wird der Blutfluss. An sich hängt der Widerstand von der Größe des Lumens der Gefäße des arteriellen Kreislaufsystems ab. Der Gesamtwiderstand aller Gefäße des Kreislaufsystems wird als Gesamtumfangswiderstand bezeichnet. Wenn im Körper in kurzer Zeit eine Verringerung des Lumens der Gefäße auftritt, nimmt der gesamte periphere Widerstand zu und mit der Ausdehnung des Lumens der Gefäße ab.

Sowohl die Ausdehnung als auch die Kontraktion der Gefäße des gesamten Kreislaufsystems erfolgt unter dem Einfluss vieler verschiedener Faktoren, wie zum Beispiel der Trainingsintensität, dem Stimulationsniveau des Nervensystems, der Aktivität von Stoffwechselprozessen in bestimmten Muskelgruppen, dem Verlauf von Wärmeaustauschprozessen mit der äußeren Umgebung und nicht nur. Während des Trainings führt die Stimulation des Nervensystems zu einer Erweiterung der Blutgefäße und zu einem erhöhten Blutfluss. Gleichzeitig ist der bedeutendste Anstieg der Blutzirkulation in den Muskeln in erster Linie das Ergebnis des Flusses metabolischer und elektrolytischer Reaktionen im Muskelgewebe unter dem Einfluss von aeroben und anaeroben Übungen. Dies beinhaltet eine Erhöhung der Körpertemperatur und eine Erhöhung der Kohlendioxidkonzentration. Alle diese Faktoren tragen zur Ausdehnung der Blutgefäße bei.

Gleichzeitig sinkt der Blutfluss in anderen Organen und Körperteilen, die nicht an der Ausübung körperlicher Aktivität beteiligt sind, als Folge der Kontraktion von Arteriolen. Zusammen mit der Verengung der großen Gefäße des venösen Kreislaufsystems trägt dieser Faktor zu einer Erhöhung des Blutvolumens bei, das an der Blutversorgung der an der Arbeit beteiligten Muskeln beteiligt ist. Der gleiche Effekt wird bei der Ausführung von Stromlasten mit kleinen Gewichten, aber mit einer großen Anzahl von Wiederholungen beobachtet. Die Reaktion des Körpers kann in diesem Fall mit Aerobic-Übungen gleichgesetzt werden. Gleichzeitig erhöht sich bei Kraftarbeit mit großen Gewichten der Durchblutungswiderstand in den Arbeitsmuskeln.

Fazit

Wir haben die Struktur und Funktion des menschlichen Kreislaufsystems überprüft. Wie uns jetzt klar geworden ist, ist es notwendig, Blut durch den Körper durch das Herz zu pumpen. Das arterielle System treibt das Blut aus dem Herzen, das venöse System gibt ihm Blut zurück. In Bezug auf körperliche Aktivität können Sie wie folgt zusammenfassen. Der Blutfluss im Kreislaufsystem hängt vom Widerstandsgrad der Blutgefäße ab. Wenn der Widerstand der Blutgefäße abnimmt, steigt der Blutfluss und mit zunehmendem Widerstand nimmt er ab. Die Verringerung oder Ausdehnung von Blutgefäßen, die den Widerstand bestimmen, hängt von Faktoren wie der Art der Bewegung, der Reaktion des Nervensystems und dem Verlauf von Stoffwechselprozessen ab.

Die Struktur der Vene: Anatomie, Merkmale, Funktionen

Eines der Bestandteile des menschlichen Kreislaufsystems ist eine Vene. Die Tatsache, dass eine solche Ader definitionsgemäß die Struktur und Funktion darstellt, muss jeder kennen, der seine Gesundheit überwacht.

Was ist eine Vene und ihre anatomischen Merkmale

Venen sind wichtige Blutgefäße, die das Blut zum Herzen fließen lassen. Sie bilden ein ganzes Netzwerk, das sich im Körper ausbreitet.

Sie werden mit Blut aus den Kapillaren aufgefüllt, von denen sie gesammelt und an den Hauptmotor des Körpers zurückgegeben werden.

Diese Bewegung beruht auf der Saugfunktion des Herzens und dem Vorhandensein von Unterdruck in der Brust, wenn die Atmung auftritt.

Anatomie enthält eine Reihe recht einfacher Elemente, die sich auf drei Ebenen befinden und deren Funktionen ausführen.

Eine wichtige Rolle bei der normalen Funktion der Ventile spielen.

Die Struktur der Wände der venösen Gefäße

Zu wissen, wie dieser Blutkanal aufgebaut ist, wird zum Schlüssel zum Verständnis der Adern im Allgemeinen.

Die Wände der Adern bestehen aus drei Schichten. Draußen sind sie von einer Schicht aus sich bewegendem und nicht zu dichtem Bindegewebe umgeben.

Seine Struktur ermöglicht es den unteren Schichten, Nahrung aufzunehmen, auch von umgebendem Gewebe. Auch die Befestigung der Venen ist auf diese Schicht zurückzuführen.

Die mittlere Schicht besteht aus Muskelgewebe. Es ist dichter als das Obermaterial, also formt und stützt er sie.

Aufgrund der elastischen Eigenschaften dieses Muskelgewebes können die Venen Druckverlusten standhalten, ohne ihre Integrität zu beeinträchtigen.

Das Muskelgewebe, aus dem die mittlere Schicht besteht, wird aus glatten Zellen gebildet.

In den Venen, die vom typlosen Typ sind, fehlt die mittlere Schicht.

Dies ist charakteristisch für die Venen, die durch die Knochen, die Meningen, die Augäpfel, die Milz und die Plazenta gehen.

Die innere Schicht ist ein sehr dünner Film aus einfachen Zellen. Es wird Endothel genannt.

Im Allgemeinen ähnelt die Struktur der Wände der Struktur der Wände der Arterien. Die Breite ist normalerweise größer und die Dicke der mittleren Schicht, die aus Muskelgewebe besteht, ist dagegen geringer.

Merkmale und Rolle der Venenklappen

Venenklappen sind Teil eines Systems, das den Blutfluss im menschlichen Körper ermöglicht.

Venöses Blut fließt trotz Schwerkraft durch den Körper. Um dies zu überwinden, wird die Muskel-Venen-Pumpe in Betrieb gesetzt, und die gefüllten Ventile lassen die eingespritzte Flüssigkeit nicht wieder entlang des Gefäßbetts zurückkehren.

Dank der Klappen bewegt sich das Blut nur in Richtung Herz.

Das Ventil ist die Falte, die aus der inneren Schicht aus Kollagen gebildet wird.

In ihrer Struktur ähneln sie Taschen, die sich unter dem Einfluss der Blutschwere schließen und an Ort und Stelle halten.

Ventile können ein bis drei Verschlüsse haben und befinden sich in kleinen und mittleren Adern. Große Schiffe verfügen nicht über einen solchen Mechanismus.

Ein Ausfall der Klappen kann zu Blutstauung in den Venen und zu unregelmäßigen Bewegungen führen. Die Ursache dieses Problems sind Krampfadern, Thrombosen und ähnliche Krankheiten.

Hauptaderfunktionen

Das menschliche Venensystem, dessen Funktionen im Alltag praktisch unsichtbar sind, wenn Sie nicht darüber nachdenken, sichert das Leben des Organismus.

Das Blut, das in allen Ecken des Körpers verteilt ist, ist schnell mit den Produkten aller Systeme und Kohlendioxid gesättigt.

Um all dies zu schaffen und Raum für mit nützlichen Substanzen gesättigtes Blut zu schaffen, arbeiten Venen.

Außerdem werden Hormone, die in den endokrinen Drüsen synthetisiert werden, sowie Nährstoffe aus dem Verdauungssystem mit Venen im ganzen Körper verteilt.

Die Vene ist natürlich ein Blutgefäß, sie ist also direkt an der Regulierung des Blutkreislaufs durch den menschlichen Körper beteiligt.

Dank ihr gibt es in jedem Teil des Körpers Blut, während die Paararbeit mit den Arterien erfolgt.

Struktur und Eigenschaften

Das Kreislaufsystem hat zwei kleine und große Kreise mit eigenen Aufgaben und Merkmalen. Das Schema des menschlichen Venensystems basiert genau auf dieser Einteilung.

Kreislaufsystem

Kleiner Kreis wird auch pulmonal genannt. Seine Aufgabe ist es, Blut aus der Lunge in den linken Vorhof zu bringen.

Die Lungenkapillaren haben einen Übergang zu den Venolen, die weiter zu großen Gefäßen zusammengeführt werden.

Diese Venen gehen in die Bronchien und Teile der Lunge, und bereits an den Eingängen zu den Lungen (Toren) sind sie zu großen Kanälen zusammengefasst, von denen zwei aus jeder Lunge gehen.

Sie haben keine Klappen, gehen aber jeweils von der rechten Lunge zum rechten Vorhof und von links nach links.

Großer Kreislauf des Blutkreislaufs

Der große Kreis ist für die Blutversorgung jedes Organs und Gewebes in einem lebenden Organismus verantwortlich.

Der Oberkörper ist an der oberen Hohlvene befestigt, die in Höhe der dritten Rippe in den rechten Vorhof mündet.

Dies liefert Blut solche Venen wie: Jugularis, Subclavia, Brachiocephalica und andere benachbarte.

Aus dem Unterkörper gelangt Blut in die Venen des Beckens. Hier konvergiert das Blut entlang der äußeren und inneren Venen, die auf Höhe des vierten Lendenwirbels in die untere Hohlvene konvergieren.

Bei allen Organen, die kein Paar haben (außer der Leber), gelangt das Blut durch die Pfortader zuerst in die Leber und dann von hier in die untere Hohlvene.

Merkmale der Bewegung von Blut durch die Venen

In einigen Stadien der Bewegung, zum Beispiel von den unteren Extremitäten, wird das Blut in den Venenkanälen gezwungen, die Schwerkraft zu überwinden, die im Durchschnitt fast eineinhalb Meter ansteigt.

Dies geschieht aufgrund der Atmungsphasen, wenn während der Inhalation ein Unterdruck in der Brust auftritt.

Der Druck in den Venen, die sich in der Nähe der Brust befinden, ist anfänglich atmosphärisch.

Zusätzlich wird das Blut durch die kontrahierenden Muskeln gedrückt, die indirekt am Blutkreislauf beteiligt sind und das Blut nach oben heben.

Das venöse System des Menschen

Das menschliche Venensystem ist eine Ansammlung verschiedener Venen, die eine vollständige Durchblutung des Körpers ermöglichen. Dank dieses Systems erfolgt die Ernährung aller Organe und Gewebe sowie die Anpassung des Wasserhaushalts in den Zellen und die Entfernung von Giftstoffen aus dem Körper. Anatomisch ist es dem arteriellen System ähnlich, es gibt jedoch einige Unterschiede, die für bestimmte Funktionen verantwortlich sind. Was ist der funktionale Zweck der Venen und welche Krankheiten können bei Verletzung der Durchgängigkeit der Blutgefäße auftreten?

Allgemeine Merkmale

Die Venen sind Gefäße des Kreislaufsystems, die Blut zum Herzen transportieren. Sie werden aus verzweigten Venulen kleinen Durchmessers gebildet, die aus dem Kapillarnetzwerk gebildet werden. Die Gruppe der Venolen verwandelt sich in größere Gefäße, aus denen die Hauptadern gebildet werden. Ihre Wände sind etwas dünner und weniger elastisch als die der Arterien, da sie weniger Stress und Druck ausgesetzt sind.

Der Blutfluss durch die Gefäße wird durch die Arbeit des Herzens und der Brust sichergestellt, wenn die Einatmungskontraktion des Zwerchfells während der Inhalation auftritt und sich ein Unterdruck bildet. In den Gefäßwänden befinden sich Klappen, die die umgekehrte Bewegung von Blut verhindern. Ein Faktor, der zur Arbeit des Venensystems beiträgt, ist die rhythmische Kontraktion der Muskelfasern eines Gefäßes, die das Blut nach oben drückt, wodurch eine venöse Pulsation erzeugt wird.

Wie wird die Blutzirkulation durchgeführt?

Das menschliche Venensystem ist herkömmlicherweise in einen kleinen und einen großen Blutkreislauf unterteilt. Der kleine Kreis ist für die Thermoregulation und den Gasaustausch im Lungensystem konzipiert. Es stammt aus dem Hohlraum des rechten Ventrikels, dann fließt Blut in den Lungenrumpf, der aus kleinen Gefäßen besteht und in den Alveolen endet. Sauerstoffhaltiges Blut aus den Alveolen bildet das Venensystem, das in den linken Vorhof fließt und den Lungenkreislauf komplettiert. Die Gesamtdurchblutung beträgt weniger als fünf Sekunden.

Die Aufgabe eines großen Blutkreislaufs besteht darin, alle Gewebe des Körpers mit mit Sauerstoff angereichertem Blut zu versorgen. Der Kreis nimmt seinen Ursprung in der Höhle des linken Ventrikels, wo eine hohe Sauerstoffsättigung auftritt, wonach das Blut in die Aorta gelangt. Die biologische Flüssigkeit reichert das periphere Gewebe mit Sauerstoff an und kehrt dann über das Gefäßsystem zum Herzen zurück. In den meisten Organen des Verdauungstrakts wird das Blut zunächst in der Leber gefiltert, anstatt direkt zum Herzen zu gelangen.

Funktionszweck

Das volle Funktionieren des Blutkreislaufs hängt von vielen Faktoren ab, zum Beispiel:

  • individuelle Merkmale der Struktur und Lage der Venen;
  • Geschlecht;
  • Alterskategorie;
  • Lebensstil;
  • genetische Anfälligkeit für chronische Krankheiten;
  • das Vorhandensein von Entzündungsprozessen im Körper;
  • Stoffwechselstörungen;
  • Aktionen von Infektionserregern.

Wenn eine Person die Risikofaktoren festlegt, die das Funktionieren des Systems beeinflussen, sollte sie Präventivmaßnahmen beachten, da mit dem Alter die Gefahr besteht, dass sich Venenpathologien entwickeln.

Die Hauptfunktionen der venösen Gefäße:

  • Blutkreislauf Kontinuierliche Bewegung des Blutes vom Herzen zu den Organen und Geweben.
  • Nährstoffe transportieren. Bietet die Übertragung von Nährstoffen aus dem Verdauungstrakt in den Blutkreislauf.
  • Verteilung von Hormonen Regulierung von Wirkstoffen, die eine humorale Regulierung des Körpers durchführen.
  • Ausscheidung von Toxinen. Die Entfernung von Schadstoffen und metabolischen Endprodukten aus allen Geweben in die Organe des Ausscheidungssystems.
  • Schützend. Das Blut enthält Immunglobuline, Antikörper, Leukozyten und Blutplättchen, die den Körper vor pathogenen Faktoren schützen.

Das Venensystem ist aktiv an der Verteilung des pathologischen Prozesses beteiligt, da es als Hauptweg für die Ausbreitung von eitrigen und entzündlichen Phänomenen, Tumorzellen, Fett- und Luftembolien dient.

Strukturelle Merkmale

Die anatomischen Merkmale des Gefäßsystems sind in seiner wichtigen funktionalen Bedeutung im Körper und bei Durchblutungszuständen. Das arterielle System arbeitet im Gegensatz zum Venensystem unter dem Einfluss der kontraktilen Aktivität des Myokards und ist nicht vom Einfluss externer Faktoren abhängig.

Die Anatomie des Venensystems impliziert das Vorhandensein von oberflächlichen und tiefen Venen. Die oberflächlichen Venen befinden sich unter der Haut, sie beginnen mit den oberflächlichen Gefäßplexusse oder dem Venenbogen des Kopfes, des Rumpfes, der unteren und oberen Extremitäten. Tief liegende Venen sind in der Regel gepaart, sie haben ihren Ursprung in separaten Körperteilen, parallel begleiten sie die Arterien, von denen sie als "Satelliten" bezeichnet werden.

Die Struktur des Venennetzwerks ist das Vorhandensein einer großen Anzahl von Gefäßplexen und Botschaften, die den Blutkreislauf von einem System zum anderen ermöglichen. Die Adern von kleinem und mittlerem Kaliber sowie einige große Gefäße auf der Innenschale enthalten Ventile. Die Blutgefäße der unteren Extremitäten haben eine unbedeutende Anzahl von Klappen, daher beginnen sich mit ihrer Abschwächung pathologische Prozesse zu bilden. Die Venen der Hals-, Kopf- und Hohlvenen enthalten keine Klappen.

Die venöse Wand besteht aus mehreren Schichten:

  • Kollagen (widersteht der inneren Bewegung des Blutes).
  • Glatte Muskulatur (Kontraktion und Dehnung der venösen Wände erleichtern den Blutkreislauf).
  • Bindegewebe (sorgt für Elastizität bei Körperbewegungen).

Die venösen Wände haben eine unzureichende Elastizität, da der Druck in den Gefäßen niedrig ist und die Blutströmungsgeschwindigkeit unbedeutend ist. Wenn eine Vene gedehnt wird, wird der Abfluss behindert, aber Muskelkontraktionen helfen bei der Bewegung von Flüssigkeit. Die Erhöhung der Blutströmungsgeschwindigkeit tritt auf, wenn zusätzliche Temperaturen ausgesetzt werden.

Risikofaktoren bei der Entwicklung von Gefäßpathologien

Das Gefäßsystem der unteren Gliedmaßen ist beim Gehen, Laufen und in langem Stehen einer hohen Belastung ausgesetzt. Es gibt viele Gründe, die die Entwicklung venöser Pathologien auslösen. Die Nichteinhaltung der Prinzipien der rationalen Ernährung, wenn gebratene, salzige und süße Speisen in der Ernährung des Patienten vorherrschen, führt zur Bildung von Blutgerinnseln.

Primäre Thrombosen werden in den Adern mit kleinem Durchmesser beobachtet, aber wenn das Blutgerinnsel wächst, fallen seine Teile in die großen Gefäße, die auf das Herz gerichtet sind. Bei schweren Erkrankungen führen Blutgerinnsel im Herzen zum Stillstand.

Ursachen von Venenleiden:

  • Erbliche Veranlagung (Vererbung eines mutierten Gens, das für die Gefäßstruktur verantwortlich ist).
  • Veränderungen des Hormonspiegels (während der Schwangerschaft und der Menopause kommt es zu einem Ungleichgewicht der Hormone, das den Zustand der Venen beeinflusst).
  • Diabetes mellitus (ständig erhöhte Glukosespiegel im Blut führen zu Schäden an den Venenwänden).
  • Missbrauch alkoholischer Getränke (Alkohol dehydriert den Körper, was zu einer Verdickung des Blutflusses mit weiterer Gerinnselbildung führt).
  • Chronische Verstopfung (erhöhter intraabdominaler Druck, erschwert das Abfließen der Flüssigkeit von den Beinen).

Krampfadern der unteren Extremitäten ist eine recht häufige Pathologie bei der weiblichen Bevölkerung. Diese Krankheit entwickelt sich aufgrund einer Abnahme der Elastizität der Gefäßwand, wenn der Körper starken Belastungen ausgesetzt ist. Ein zusätzlicher provokativer Faktor ist Übergewicht, das zu einer Dehnung des venösen Netzwerks führt. Die Zunahme des zirkulierenden Flüssigkeitsvolumens trägt zu einer zusätzlichen Belastung des Herzens bei, da seine Parameter unverändert bleiben.

Gefäßpathologie

Funktionsstörungen des Venensystems führen zu Thrombose und Krampfadilatation. Am häufigsten leiden Menschen an folgenden Krankheiten:

  • Krampfvergrößerung. Manifestiert durch eine Vergrößerung des Durchmessers des Gefäßlumens, nimmt jedoch seine Dicke ab und bildet Knoten. In den meisten Fällen ist der pathologische Prozess in den unteren Extremitäten lokalisiert, es sind jedoch Fälle von Läsionen der Ösophagusvenen möglich.
  • Atherosklerose Die Störung des Fettstoffwechsels ist durch die Ablagerung von Cholesterinbildungen im Gefäßlumen gekennzeichnet. Es besteht ein hohes Risiko für Komplikationen, wobei die Herzkranzgefäße besiegt werden, ein Herzinfarkt auftritt und die Besiedlung der Nebenhöhlen des Gehirns zur Entwicklung eines Schlaganfalls führt.
  • Thrombophlebitis Entzündung der Blutgefäße, wodurch das Lumen vollständig mit einem Blutgerinnsel verstopft wird. Die größte Gefahr besteht in der Migration eines Blutgerinnsels durch den Körper, da dies zu schwerwiegenden Komplikationen in jedem Organ führen kann.

Die pathologische Ausdehnung von Adern mit kleinem Durchmesser wird als Teleangiektasie bezeichnet. Sie äußert sich in einem langen pathologischen Prozess mit der Bildung von Sternchen auf der Haut.

Erste Anzeichen einer Schädigung des Venensystems

Die Schwere der Symptome hängt vom Stadium des pathologischen Prozesses ab. Mit dem Fortschreiten der Läsion des Venensystems nimmt der Schweregrad der Manifestationen zu, begleitet von dem Auftreten von Hautfehlern. In den meisten Fällen tritt die Verletzung des venösen Abflusses in den unteren Gliedmaßen auf, da sie die größte Belastung ausmachen.

Frühe Anzeichen einer schlechten Durchblutung der unteren Gliedmaßen:

  • erhöhtes venöses Muster;
  • erhöhte Müdigkeit beim Gehen;
  • Schmerz, begleitet von einem Quetschgefühl;
  • starke Schwellung;
  • Entzündung der Haut;
  • vaskuläre Deformität;
  • krampfartige Schmerzen.

In späteren Stadien kommt es zu einer erhöhten Trockenheit und Blässe der Haut, die durch das Auftreten von trophischen Geschwüren noch komplizierter werden kann.

Wie diagnostiziert man die Pathologie?

Die Diagnose von Erkrankungen, die mit der Störung des venösen Kreislaufs verbunden sind, ist die Durchführung folgender Studien:

  • Funktionstests (ermöglichen die Beurteilung des Gefäßpermeabilitätsgrades und des Zustands ihrer Klappen).
  • Duplex-Angioscanning (Echtzeit-Blutflussanalyse).
  • Dopplersonographie (lokale Bestimmung des Blutflusses).
  • Phlebographie (durch Injektion eines Kontrastmittels).
  • Phleboscintiographie (Einführung einer speziellen Radionuklidsubstanz ermöglicht die Identifizierung aller möglichen vaskulären Anomalien).

Untersuchungen zum Zustand oberflächlicher Venen werden durch visuelle Inspektion und Palpation sowie die ersten drei Methoden aus der Liste durchgeführt. Für die Diagnose tiefer Gefäße verwenden Sie die letzten beiden Methoden.

Das Venensystem hat eine relativ hohe Festigkeit und Elastizität, aber die Auswirkungen negativer Faktoren führen zu einer Störung seiner Aktivität und der Entwicklung von Krankheiten. Um das Risiko für Pathologien zu reduzieren, muss eine Person die Empfehlungen für einen gesunden Lebensstil beachten, die Belastung normalisieren und sich rechtzeitig von einem Spezialisten untersuchen lassen.

Menschliches Venendiagramm

Venen sind Blutgefäße, die Blut von den Kapillaren in Richtung Herz transportieren. Alle Venen bilden das Venensystem. Die Farbe der Venen hängt vom Blut ab. Das Blut ist in der Regel sauerstoffarm, enthält Zerfallsprodukte und ist dunkelrot.

Venenstruktur

Die Venen liegen durch ihre Struktur recht nahe an den Arterien, jedoch mit ihren eigenen Merkmalen, beispielsweise niedrigem Druck und niedriger Blutgeschwindigkeit. Diese Merkmale verleihen den Venenwänden einige Merkmale. Verglichen mit Arterien haben die Adern einen großen Durchmesser, eine dünne Innenwand und eine gut definierte Außenwand. Aufgrund seiner Struktur im venösen System beträgt die Gesamtblutmenge etwa 70%.

Die Venen unterhalb der Herzebene, zum Beispiel die Venen in den Beinen, haben zwei Venen-Systeme - oberflächlich und tief. Venen unterhalb des Herzniveaus haben beispielsweise die Venen in den Armen Klappen an der Innenfläche, die sich im Verlauf des Blutflusses öffnen. Wenn die Vene mit Blut gefüllt ist, schließt sich das Ventil, sodass das Blut nicht zurückfließen kann. Die am weitesten entwickelten Ventilapparaturen in Venen mit starker Entwicklung sind beispielsweise die Venen des Unterkörpers.

Oberflächliche Venen befinden sich unmittelbar unter der Hautoberfläche. Entlang der Muskulatur befinden sich tiefe Venen, die zu ca. 85% aus den unteren Extremitäten venöses Blut abfließen lassen. Tiefe Venen, die mit dem Oberflächlichen zusammenhängen, werden als kommunikativ bezeichnet.

Durch die Verschmelzung bilden die Venen große venöse Stämme, die in das Herz fließen. Die Venen sind in großer Zahl miteinander verbunden und bilden venöse Plexus.

Funktionen der Venen

Die Hauptfunktion der Venen besteht darin, den Abfluss von mit Kohlendioxid und Zersetzungsprodukten gesättigtem Blut sicherzustellen. Darüber hinaus gelangen verschiedene Hormone der endokrinen Drüsen und Nährstoffe aus dem Magen-Darm-Trakt durch die Venen in den Blutkreislauf. Venen regulieren die allgemeine und lokale Durchblutung.

Der Blutkreislauf durch die Venen und Arterien ist sehr unterschiedlich. In den Arterien dringt das Blut während der Kontraktion unter dem Druck des Herzens ein (etwa 120 mmHg), während der Druck in den Venen nur 10 mmHg beträgt. Art.

Es ist auch erwähnenswert, dass die Bewegung von Blut durch die Venen gegen die Schwerkraft erfolgt, in Verbindung mit diesem venösen Blut die Kraft des hydrostatischen Drucks erfährt. Bei einer Fehlfunktion der Klappe ist die Schwerkraftkraft manchmal so groß, dass sie den normalen Blutfluss stört. Gleichzeitig stagniert Blut in den Gefäßen und verformt diese. Danach werden die Venen Krampfadern genannt. Krampfadern haben ein aufgeblähtes Aussehen, was durch den Namen der Krankheit (aus dem lateinischen Varix, Gattung Varicis - "Schwellung") gerechtfertigt ist. Die Arten der Behandlung von Krampfadern sind heutzutage sehr umfangreich, vom Volksrat bis zum Schlaf in einer solchen Position, dass die Füße über dem Herzniveau liegen, bis zur Operation und Entfernung der Vene.

Eine andere Krankheit ist die Venenthrombose. Bei einer Thrombose in den Venen bilden sich Blutgerinnsel (Blutgerinnsel). Dies ist eine sehr gefährliche Krankheit, weil Blutgerinnsel, die sich gelöst haben, können durch das Kreislaufsystem in die Lungengefäße gelangen. Wenn ein Blutgerinnsel groß genug ist, kann es tödlich sein, wenn es in die Lunge gelangt.

Das Venensystem des Menschen: Was bestimmt die Gesundheit der Venen?

Um richtig zu funktionieren, benötigen alle Organe und Gewebe unseres Körpers regelmäßig Sauerstoff und Nährstoffe. Das Herz-Kreislauf-System, bestehend aus dem Herzen, dem Blutgefäßnetz und dem Blut selbst, ist das für diese Abgabe zuständige Transportsystem.

Das Herz ist der Motor und die Blutgefäße bilden einen Kanal, durch den Blut fließt. Ein Erwachsener hat ungefähr 4-6 Liter Blut, das den ganzen Tag über im Körper zirkuliert. So transportieren unsere Blutgefäße täglich rund 10.000 Liter Blut.

Blutgefäße bestehen aus Arterien und Venen.

  • Arterien transportieren hellrotes Blut, reich an Sauerstoff und Nährstoffen, zu allen Organen und Geweben des Körpers.
  • Venen sind Blutgefäße, die Blut vom Körper zurück zum Herzen transportieren. Venöses Blut ist dunkelrot und enthält Abfallprodukte und weniger Sauerstoff als im arteriellen Blut.

Das Herz ist ein Muskel, der sich zusammenzieht und entspannt, um Blut durch den gesamten Körper in die Arterien zu pumpen, so dass jede Zelle mit Sauerstoff und essentiellen Nährstoffen versorgt wird.

Das Blut verlässt die linke Seite des Herzens durch die Hauptarterie, die Aorta, die sich weiter in kleinere Arterien verzweigt und so Blut zu allen Organen und Geweben des Körpers transportiert.

Die kleinen Arterien enden in den sogenannten Kapillaren, den kleinsten Zweigen des Gefäßbaumes. In den Kapillaren werden Sauerstoff und Nährstoffe aus dem Blut in das umgebende Gewebe abgegeben.

Herz, Arterien und Venen (Venen - blau, Arterien - rot)

Das Blut erzeugt dann Kohlendioxid und andere Abfallprodukte. Jetzt gibt es wenig Sauerstoff im Blut und viele unnötige Stoffwechselprodukte. Zuerst werden sie in kleineren Venen gesammelt und dann durch große Venen zum Herzen zurücktransportiert. Die Zirkulation des Blutes vom Herzen um den Körper und den Rücken wird als systemische Zirkulation bezeichnet.

Das Blut kehrt zur rechten Seite des Herzens zurück und wird durch die Arterien in die Lunge gepumpt. Im Gegensatz zu allen anderen Arterien im Körper tragen die Lungenarterien Blut mit niedrigem Sauerstoffgehalt.

Einmal in der Lunge ist das Blut wieder mit Sauerstoff gesättigt und fließt durch die Lungenvenen zurück zur linken Seite des Herzens. Diese Venen bilden auch eine Ausnahme von der Regel, da sie Blut aus der Lunge in das mit Sauerstoff angereicherte Herz transportieren. Der Blutfluss vom Herzen zur Lunge und umgekehrt wird als Lungenkreislauf bezeichnet.

Die linke Seite des Herzens pumpt Blut um die Körperhöhle und die Zirkulation beginnt von neuem.

Gesunde Adern für schöne Beine

Venen sind Blutgefäße, die Blut mit niedrigem Sauerstoffgehalt und Abfallprodukte vom Körper zurück zum Herzen transportieren.

Gesunde Venen in den Beinen sind eine wichtige Voraussetzung für eine normale Durchblutung. Dafür müssen unsere Adern jeden Tag extrem hart arbeiten.

Sie transportieren das gesamte Blut von den Beinen zum Herzen gegen die Schwerkraft. Ein komplexes System aus Ventilen und Pumpmuskeln hilft den Venen, die Schwerkraft zu überwinden und das Blut zurück zum Herzen zu transportieren.

Wie funktionieren die Venen und Venen? (Video)

Venenklappen - das wichtigste Element für die Venengesundheit

Ventile in den Venen der menschlichen Venen

Die Wände der Arterien und Venen haben die gleiche Grundstruktur. Sie haben ein dünnes Innenfutter, Endothel, gefolgt von einer Schicht aus Bindegewebe und Muskelschicht.

Schließlich gibt es noch eine weitere Schicht Bindegewebe.

Die Arterien haben eine dicke Muskelschicht, weil der Blutdruck in ihnen höher ist. Der Blutdruck in den Venen ist niedriger, daher ist die Muskelschicht dünner und die Wände der Venen sind im Allgemeinen dünner.

Von der Innenwand ausgehende Ventile sind die besondere Exklusivität der Venen. Volumetrische Beinvenen haben bis zu 20 dieser Klappen. Diese Bindegewebsstrukturen wirken als Rückschlagklappen und sorgen dafür, dass Blut nur in Richtung Herz fließt. Ventile öffnen sich, wenn Blut zum Herzen fließt, und schließen, wenn es in die falsche Richtung fließt.

Die Bewegung von Blut ähnelt einer Einbahnstraße, die zum Herzen hinauffließt. Wenn die Klappen nicht mehr richtig funktionieren und nicht dicht schließen können, beginnen Blutanteile in die falsche Richtung zu fließen, nämlich zu den Beinen und sammeln sich in den Venen. Unbehandelt verursacht es irreversible Schäden an den Venen mit Folgekomplikationen wie Krampfadern.

Kein Fluss ohne Muskelpumpe

Muskeln helfen dem Blut, zum Herzen aufzusteigen

Neben Klappen sorgt die sogenannte Muskelpumpe dafür, dass Blut gegen die Schwerkraft von den Beinen zum Herzen transportiert wird.

Tiefe Venen im Bein sind von Muskeln umgeben, die automatisch aktiviert werden, wenn Sie Ihre Beine bewegen oder wenn Sie gehen, und die zusammen eine Muskelpumpe bilden. Während sie sich bewegen, ziehen sich die Bauchmuskeln zusammen und drücken die Venen zwischen sich zusammen, wodurch das Blut, das sie enthalten, gezwungen wird, in Richtung Herz zu fließen. Ventile verhindern einen Rückfluss von Blut in die falsche Richtung.

Daher wirken die Muskeln als Pumpe auf die Venen. Je nach Lage der Venen arbeiten verschiedene Muskeln: Füße, Knöchel und Kniegelenke, der äußerst wichtige Gastrocnemius und die Oberschenkelmuskulatur.

Damit Blut effektiv aufsteigt, müssen Sie ständig in Bewegung sein. Von der Fußsohle bis zur Wade und zum Oberschenkel sollten sich die Muskeln zusammenziehen.

Wichtige Venen für den Bluttransport

Tiefe (1), oberflächliche (2) und perforierende Venen (3)

Die Beinvenen können unterteilt werden in:

Diese beiden Systeme sind durch Bindegewebe und Muskeln getrennt, sie werden mit perforierenden Venen kombiniert.

Tiefe Venen liegen tief in der Dicke des Gewebes zwischen den Muskeln in den Beinen und erledigen normalerweise die Arbeit der tiefen Arterien, nur in die andere Richtung. Tiefe Venensysteme sind für den Menschen äußerst wichtig, da etwa 90% des venösen Bluts durch sie strömen.

So können Sie sich die Folgen vorstellen, wenn nach einer Thrombose die Ventile der Hauptvene nicht mehr richtig funktionieren und die Vene nicht mehr für den Bluttransport zur Verfügung steht.

In solchen Fällen muss der Patient für den Rest seines Lebens Kompressionsstrümpfe tragen, um den Blutfluss zum Herzen zu fördern.

Oberflächliche Venen

Oberflächliche Venen wirken oberflächlich (näher an der Oberfläche) als tiefe Venen und befinden sich direkt unter der Haut. Sie transportieren Blut von der Haut und dem subkutanen Gewebe zu tiefen Venen, was etwa 10% des venösen Blutflusses ausmacht.

Das Blut fließt normalerweise von oberflächlichen Venen durch perforierte Venen in tiefe Venen, von wo es zurück zum Herzen transportiert wird. Krampfadern - erkrankte oberflächliche Venen.

Tiefe Venen führen den Blutfluss zurück zum Herzen, sodass es kein Problem ist, wenn die oberflächliche Vene während der Behandlung entfernt oder "zusammengeklebt" werden muss.

Große und kleine Vena saphena

Große Vena saphena

Kleine Vena saphena

Die zwei wesentlichen oberflächlichen Venen in den Beinen werden als Hauptvenen bezeichnet. Diese Venen liegen etwas tiefer im Bindegewebe unter der Haut im Vergleich zu anderen Venen des oberflächlichen Systems.

Jedes Bein hat zwei Hauptvenen - die große und die kleine subkutane Vene.

Große Vena saphena (lat. Vena saphena Magna), früher lange Vena saphena genannt, die längste Vene im Bein.

Sie verläuft entlang der Fußinnenseite vom Knöchel bis zur Leiste und mündet dort in das tiefe Venensystem.

Die Adern dieser beiden Systeme finden sich bei der sogenannten Safeno-Femur-Anastomose (in der Vergangenheit wurde dieses Gebiet auch als „Kreuzung“ bezeichnet). Einige andere oberflächliche Venen fließen bei dieser Anastomose in die tiefe Vene und verleihen dem Gelenk ein sternförmiges Aussehen.

In der Leistengegend gibt es eine große Stammvene, die so dick wie ein Strohhalm ist, obwohl der genaue Durchmesser von Person zu Person variiert. Das Ventil befindet sich in den Hauptvenen, unmittelbar vor der Fusion im tiefen Venensystem, ist für die Entwicklung von Krampfadern von besonderer Bedeutung. Wenn dieses Ventil nicht mehr dicht schließt, sind Krampfadern unvermeidlich.

Bei Bedarf kann die V. saphena magna auch zur Umgehung der Herzkranzarterie verwendet werden und muss daher bei strengen medizinischen Indikationen entfernt oder vollständig geschlossen werden.

Die kleine V. saphena (lat.: vena saphena parva), früher als kurze Vena saphena bezeichnet, verläuft von der Außenseite des Knöchels knapp oberhalb der Kniekehle, wo sie normalerweise in die tiefen Venen mündet. Die Verbindung der Venen kann jedoch auf einer höheren oder niedrigeren Ebene sein, alles hängt von der Person ab.

Beide Hauptvenen können Krampfadern unterliegen. Wenn ihre Klappen nicht mehr richtig funktionieren, fließt das Blut allmählich nach unten und sammelt sich in den Beinvenen, bis Krampfadern auftreten.

Seitlich verzweigte Venen

Laterale Verzweigungen oder abhängige Venen - oberflächliche Venen, die in die Hauptvenen fließen Die lateralen Verzweigungsvenen gehen durch den Unterschenkel und den Oberschenkel; es gibt viele Venen, die sie miteinander verbinden, ebenso wie mit tiefen Venen.

Der Begriff „laterale Verzweigungsvenen“ ist nicht wirklich genau, da sich die Venen nicht verzweigen, sondern in die Venen des Stammes „eindringen“, in den sie Blut freisetzen. Der Einfachheit halber wird jedoch weiterhin von "lateral verzweigten Venen" gesprochen, da dies ein bekannter Begriff ist.

Wenn die Klappen in diesen abhängigen Venen nicht mehr richtig funktionieren, können sich besonders große und unansehnliche Krampfadern entwickeln.