Menschliche Blutgefäße


Abb. 1. menschliche Blutgefäße (Vorderansicht):
1 - Dorsalarterie des Fußes; 2 - A. tibialis anterior (mit begleitenden Venen); 3 - Oberschenkelarterie; 4 - Femoralvene; 5 - oberflächlicher Palmarbogen; 6 - die rechte A. iliaca externa und die rechte V. iliaca externa; 7 - rechte A. iliaca interna und rechte V. iliaca interna; 8 - A. interosseus anterior; 9 - Radialarterie (mit begleitenden Venen); 10 - Ulnararterie (mit begleitenden Venen); 11 - untere Hohlvene; 12 - V. mesenterica superior; 13 - die rechte Nierenarterie und die rechte Nierenvene; 14 - Pfortader; 15 und 16 - subkutane Venen des Unterarms; 17 - Arteria brachialis (mit begleitenden Venen); 18 - A. mesenterica superior; 19 - die rechten Lungenvenen; 20 - rechte A. axillaris und rechte A. axillaris; 21 - die rechte Lungenarterie; 22 - Vena cava superior; 23 - rechte brachiozephale Vene; 24 - die rechte Vena subclavia und die rechte Arteria subclavia; 25 - die rechte A. carotis communis; 26 - rechte V. jugularis interna; 27 - A. carotis externa; 28 - A. carotis interna; 29 - brachiozephaler Stamm; 30 - V. jugularis externa; 31 - die linke A. carotis communis; 32 - die linke V. jugularis interna; 33 - linke brachiozephale Vene; 34 - die linke A. subclavia; 35 - Aortenbogen; 36 - die linke Lungenarterie; 37 - Lungenrumpf; 38 - die linken Lungenvenen; 39 - aufsteigende Aorta; 40 - Lebervenen; 41 - Milzarterie und -vene; 42 - Zöliakiekofferraum; 43 - linke Nierenarterie und linke Nierenvene; 44 - V. mesenterica inferior; 45 - rechte und linke Hodenarterien (mit begleitenden Venen); 46 - A. mesenterica inferior; 47 - mittlere Vene des Unterarms; 48 - Bauchaorta; 49 - die linke A. iliaca communis; 50 - linke V. iliaca links; 51 - die linke A. ileal interna und die linke V. iliaca interna; 52 - linke A. iliaca externa und linke A. iliaca externa; 53 - linke Femoralarterie und linke Femoralvene; 54 - venöses palmar netzwerk; 55 - Große Vena saphena; 56 - kleine Vena saphena; 57 - venöses netz des hinteren fußes.


Abb. 2. Menschliche Blutgefäße (Rückansicht):
1 - venöses Netz des hinteren Fußes; 2 - kleine Saphena (versteckte) Ader; 3 - Femurpoplitealvene; 4-6 - Venennetz der Bürstenrückseite; 7 und 8 - subkutane Venen des Unterarms; 9 - hintere Ohrarterie; 10 - Arteria occipitalis; 11 - oberflächliche Halsarterie; 12 - Querarterie des Halses; 13 - A. suprascapularis; 14 - hintere, umhüllende Schulterarterie; 15 - die Arterie um das Schulterblatt; 16 - tiefe Schulterarterie (mit begleitenden Venen); 17 - hintere Interkostalarterien; 18 - Glutealarterie superior; 19 - untere Glutealarterie; 20 - hintere Interosseusarterie; 21 - Radialarterie; 22 - hinterer Handwurzelzweig; 23 - durchbohrende Arterien; 24 - äußere obere Arterie des Kniegelenks; 25 - Arteria poplitealis; 26 - V. poplitealis; 27 - äußere untere Arterie des Kniegelenks; 28 - A. tibialis posterior (mit begleitenden Venen); 29 - Arteria fibularis.

Schema der menschlichen Venen

Die Venen sind Blutgefäße, die venöses Blut von Organen und Gewebe zum Herzen tragen. Ausnahme sind die Lungenvenen, die das arterielle Blut von der Lunge in den linken Vorhof befördern. Die Kombination von Venen bildet das Venensystem, das Teil des Herz-Kreislaufsystems ist. Das Netz der Kapillaren in den Organen geht in kleine Postkapillaren oder Venulen über. In beträchtlichem Abstand behalten sie immer noch eine ähnliche Struktur wie Kapillaren, haben aber ein breiteres Lumen. Venulen gehen in größere Venen über, verbinden sich mit Anastomosen (siehe) und bilden venöse Plexus in oder in der Nähe von Organen. Venen werden aus den Plexi gesammelt, die Blut aus dem Organ transportieren.

Es gibt oberflächliche und tiefe Adern. Die oberflächlichen Venen befinden sich im subkutanen Fettgewebe, ausgehend von den oberflächlichen Venennetzen; ihre Anzahl, Größe und Position variieren stark. Tiefe Venen, beginnend an der Peripherie der flachen tiefen Venen, begleiten die Arterien; Oft wird eine Arterie von zwei Venen ("Venen-Satelliten") begleitet. Durch den Zusammenfluss der oberflächlichen und tiefen Venen bilden sich zwei große venöse Stämme - die obere und die untere Hohlvene, die in den rechten Vorhof fließen, wo auch der gemeinsame Fluss der Herzvenen, der Koronarsinus, fließt. Pfortader (siehe) trägt Blut aus ungepaarten Bauchorganen.

Die Wand der Vene besteht aus drei Membranen: inneres - Endothelial -, mittel - muskulöses und äußeres - Bindegewebe. Niedriger Druck und niedrige Blutflussgeschwindigkeit bestimmen die schwache Entwicklung elastischer Fasern und Membranen in der Venenwand. In einigen Bereichen werden die Wände der Vene von den Sporen der Faszien neben ihnen gehalten und bei Verletzung geklafft. Die Notwendigkeit, die Schwerkraft von Blut in den Venen der unteren Extremitäten zu überwinden, führte zur Entwicklung von Muskelelementen in ihrer Wand, im Gegensatz zu den Venen der oberen Extremitäten und der oberen Körperhälfte. An der Veneninnenwand befinden sich Klappen, die sich entlang des Blutflusses öffnen und die Bewegung des Blutes in den Venen zum Herzen hin fördern. Die Venenwand wird reichlich mit Blut, Lymphgefäßen und Nerven versorgt.

Das venöse System des Menschen


Abb. 1. Das menschliche Venensystem: 1 - v. Retromandibularis; 2 - v. facialis; 3 - v. jugularis int. Sünde. 4 - v. thyreoidea sup.; 5 - v. Jugularis ext. Sünde. 6 - v. subclavia sin.; 7 - v. brachiocephalica sin.; 8 - v. Cava sup.; 9 - v. hemiazygos (et w. intercostaies post. sin.); 10 - v. Axillaris Sünde. 11 - vv. comltantes a. brachlalls sin. 12 - v. Cephalica; 13 - v. Cava inf.; 14 - vv. Hepaticae; 15 - v. portae; 16 - v. Lienalis; 17 - v. mesenterica inf.; 18 - v. suprarenalis Sünde. 19 - v. renalis sin.; 20 - v. testicularis sin.; 21 - v. mesenterica sup.; 22 - vv. intestinales; 23 - v. iliaca communis Sünde. 24 - v. iliaca int. Sünde. 25 - v. Basilika; 26 - v. iliaca ext. Sünde. 27 - der erste teil von v. Cephalicae (v. Cephalica pollicis); 28 - der erste teil von v. Basilika (v. Salvatella); 29 - rete venosum dorsale manus; 30 - v. femoralis sin.; 31 - Plexus Pampiniformis; 32 - vv. Intercapitales; 33 - v. Saphena Magna; 34 - vv. Digitales Palmares; 35 - v. femoralis dext.; 36 - arcus venosus palmaris superficialis; 37 - v. iliaca ext. dext.; 38 - vv. Comitantes a. radialis; 39 - vv. comltantes a. Ulnaris; 40 - v. iliaca communis dext.; 41 - vv. Comitantes a. interosseae ameise; 42 - v. Testicularis dext.; 43 - v. Cava inf.; 44 - v. Mediana Cubiti; 45 - v. Basilika; 46 - vv. Comitantes a. Brachialis dext.; 47 - v. Cephalica; 48 - v. Axillaris Dext.; 49 - v. azygos (et vv. intercostaies post, dext.); 50 - v. brachiocephalica dext. 51 - v. subclavia dext.; 52 - v. jugularis int. dext.


Abb. 2. Hirnvenen: 1 - vv. cerebri superiores; 2 - v. Thalamostriata; 3 - v. Chorioidea; 4 - vv. Cerebri Internae; 5 - v. Cerebri Magna; 6 - v. Basalis; 7 - Sinus rectus; 8 - Sinus sagittalis sup.; 9 - konflues sinuum; 10 - Sinus transversus.

Abb. 3. Kopf- und Halsvenen: 1 - subkutane Venen der Parietalregion; 2 - v. Emissaria Parietalis; 3 - Sinus sagittalis sup.; 4 - vv. cerebri superiores; 5 - Sinus sagittalis inf.; 6 - v. temporalis superficialis; 7 - v. Magna Cerebri; 8 - Sinus rectus; 9 - v. Emissaria occipitalis; 10 - Sinus transversus; 11 - Sinus cavernosa; 12 - Sinus slgmoldeus; 13 - v. Emissaria mastoidea; 14 v. occipitalis; 15 - Plexus Pterygoideus; 16 - v. Retromandibularis; 17 - v. Jugularis Interna; 18 - Plexuswirbelkugeln hinten; 19 - v. Jugularis ext. 20 - v. thyreoidea sup.; 21 - v. Thyreoidea inf.; 22 - v. subclavia; 23 - v. Thoracica Interna; 24 - v. brachiocephalica sin.; 25 - v. Thyreoidea ima (Plexus thyreoideus impar); 26 - Arcus Venosus Juguli; 27 - v. Jugularis Ameise; 28 - v. facialis; 29 - v. Alveolaris Inf.; 30 - v. Buccalis (s. Buccinatoria); 31 - v. faciei profunda; 32 - v. Ophthalmica inf.; 33 - v. Ophthalmica sup.; 34 - v. supraorbital

Abb. 4. Oberflächliche und tiefe Venen der unteren Extremität (Vorderansicht): 1 - v. Femoralis; 2 - v. Saphena Magna; 3 - v. Poplitea; 4 - vv. Tibiales Ameise; 5 - rete venosum dorsale pedis; 6 - v. Saphena Parva.

Abb. 5. Oberflächliche und tiefe Venen von Bein und Fuß (Rückansicht): 1 - v. Poplitea; 2 - v. Saphena Parva; 3 - rete venosum plantare.

Abb. 6. Äußerer und innerer vertebraler (venöser) Plexus [Plexus vertebrales (Venosi)] ext. et interni).

Das venöse System des Menschen

Das menschliche Venensystem ist eine Ansammlung verschiedener Venen, die eine vollständige Durchblutung des Körpers ermöglichen. Dank dieses Systems erfolgt die Ernährung aller Organe und Gewebe sowie die Anpassung des Wasserhaushalts in den Zellen und die Entfernung von Giftstoffen aus dem Körper. Anatomisch ist es dem arteriellen System ähnlich, es gibt jedoch einige Unterschiede, die für bestimmte Funktionen verantwortlich sind. Was ist der funktionale Zweck der Venen und welche Krankheiten können bei Verletzung der Durchgängigkeit der Blutgefäße auftreten?

Allgemeine Merkmale

Die Venen sind Gefäße des Kreislaufsystems, die Blut zum Herzen transportieren. Sie werden aus verzweigten Venulen kleinen Durchmessers gebildet, die aus dem Kapillarnetzwerk gebildet werden. Die Gruppe der Venolen verwandelt sich in größere Gefäße, aus denen die Hauptadern gebildet werden. Ihre Wände sind etwas dünner und weniger elastisch als die der Arterien, da sie weniger Stress und Druck ausgesetzt sind.

Der Blutfluss durch die Gefäße wird durch die Arbeit des Herzens und der Brust sichergestellt, wenn die Einatmungskontraktion des Zwerchfells während der Inhalation auftritt und sich ein Unterdruck bildet. In den Gefäßwänden befinden sich Klappen, die die umgekehrte Bewegung von Blut verhindern. Ein Faktor, der zur Arbeit des Venensystems beiträgt, ist die rhythmische Kontraktion der Muskelfasern eines Gefäßes, die das Blut nach oben drückt, wodurch eine venöse Pulsation erzeugt wird.

Wie wird die Blutzirkulation durchgeführt?

Das menschliche Venensystem ist herkömmlicherweise in einen kleinen und einen großen Blutkreislauf unterteilt. Der kleine Kreis ist für die Thermoregulation und den Gasaustausch im Lungensystem konzipiert. Es stammt aus dem Hohlraum des rechten Ventrikels, dann fließt Blut in den Lungenrumpf, der aus kleinen Gefäßen besteht und in den Alveolen endet. Sauerstoffhaltiges Blut aus den Alveolen bildet das Venensystem, das in den linken Vorhof fließt und den Lungenkreislauf komplettiert. Die Gesamtdurchblutung beträgt weniger als fünf Sekunden.

Die Aufgabe eines großen Blutkreislaufs besteht darin, alle Gewebe des Körpers mit mit Sauerstoff angereichertem Blut zu versorgen. Der Kreis nimmt seinen Ursprung in der Höhle des linken Ventrikels, wo eine hohe Sauerstoffsättigung auftritt, wonach das Blut in die Aorta gelangt. Die biologische Flüssigkeit reichert das periphere Gewebe mit Sauerstoff an und kehrt dann über das Gefäßsystem zum Herzen zurück. In den meisten Organen des Verdauungstrakts wird das Blut zunächst in der Leber gefiltert, anstatt direkt zum Herzen zu gelangen.

Funktionszweck

Das volle Funktionieren des Blutkreislaufs hängt von vielen Faktoren ab, zum Beispiel:

  • individuelle Merkmale der Struktur und Lage der Venen;
  • Geschlecht;
  • Alterskategorie;
  • Lebensstil;
  • genetische Anfälligkeit für chronische Krankheiten;
  • das Vorhandensein von Entzündungsprozessen im Körper;
  • Stoffwechselstörungen;
  • Aktionen von Infektionserregern.

Wenn eine Person die Risikofaktoren festlegt, die das Funktionieren des Systems beeinflussen, sollte sie Präventivmaßnahmen beachten, da mit dem Alter die Gefahr besteht, dass sich Venenpathologien entwickeln.

Die Hauptfunktionen der venösen Gefäße:

  • Blutkreislauf Kontinuierliche Bewegung des Blutes vom Herzen zu den Organen und Geweben.
  • Nährstoffe transportieren. Bietet die Übertragung von Nährstoffen aus dem Verdauungstrakt in den Blutkreislauf.
  • Verteilung von Hormonen Regulierung von Wirkstoffen, die eine humorale Regulierung des Körpers durchführen.
  • Ausscheidung von Toxinen. Die Entfernung von Schadstoffen und metabolischen Endprodukten aus allen Geweben in die Organe des Ausscheidungssystems.
  • Schützend. Das Blut enthält Immunglobuline, Antikörper, Leukozyten und Blutplättchen, die den Körper vor pathogenen Faktoren schützen.

Das Venensystem ist aktiv an der Verteilung des pathologischen Prozesses beteiligt, da es als Hauptweg für die Ausbreitung von eitrigen und entzündlichen Phänomenen, Tumorzellen, Fett- und Luftembolien dient.

Strukturelle Merkmale

Die anatomischen Merkmale des Gefäßsystems sind in seiner wichtigen funktionalen Bedeutung im Körper und bei Durchblutungszuständen. Das arterielle System arbeitet im Gegensatz zum Venensystem unter dem Einfluss der kontraktilen Aktivität des Myokards und ist nicht vom Einfluss externer Faktoren abhängig.

Die Anatomie des Venensystems impliziert das Vorhandensein von oberflächlichen und tiefen Venen. Die oberflächlichen Venen befinden sich unter der Haut, sie beginnen mit den oberflächlichen Gefäßplexusse oder dem Venenbogen des Kopfes, des Rumpfes, der unteren und oberen Extremitäten. Tief liegende Venen sind in der Regel gepaart, sie haben ihren Ursprung in separaten Körperteilen, parallel begleiten sie die Arterien, von denen sie als "Satelliten" bezeichnet werden.

Die Struktur des Venennetzwerks ist das Vorhandensein einer großen Anzahl von Gefäßplexen und Botschaften, die den Blutkreislauf von einem System zum anderen ermöglichen. Die Adern von kleinem und mittlerem Kaliber sowie einige große Gefäße auf der Innenschale enthalten Ventile. Die Blutgefäße der unteren Extremitäten haben eine unbedeutende Anzahl von Klappen, daher beginnen sich mit ihrer Abschwächung pathologische Prozesse zu bilden. Die Venen der Hals-, Kopf- und Hohlvenen enthalten keine Klappen.

Die venöse Wand besteht aus mehreren Schichten:

  • Kollagen (widersteht der inneren Bewegung des Blutes).
  • Glatte Muskulatur (Kontraktion und Dehnung der venösen Wände erleichtern den Blutkreislauf).
  • Bindegewebe (sorgt für Elastizität bei Körperbewegungen).

Die venösen Wände haben eine unzureichende Elastizität, da der Druck in den Gefäßen niedrig ist und die Blutströmungsgeschwindigkeit unbedeutend ist. Wenn eine Vene gedehnt wird, wird der Abfluss behindert, aber Muskelkontraktionen helfen bei der Bewegung von Flüssigkeit. Die Erhöhung der Blutströmungsgeschwindigkeit tritt auf, wenn zusätzliche Temperaturen ausgesetzt werden.

Risikofaktoren bei der Entwicklung von Gefäßpathologien

Das Gefäßsystem der unteren Gliedmaßen ist beim Gehen, Laufen und in langem Stehen einer hohen Belastung ausgesetzt. Es gibt viele Gründe, die die Entwicklung venöser Pathologien auslösen. Die Nichteinhaltung der Prinzipien der rationalen Ernährung, wenn gebratene, salzige und süße Speisen in der Ernährung des Patienten vorherrschen, führt zur Bildung von Blutgerinnseln.

Primäre Thrombosen werden in den Adern mit kleinem Durchmesser beobachtet, aber wenn das Blutgerinnsel wächst, fallen seine Teile in die großen Gefäße, die auf das Herz gerichtet sind. Bei schweren Erkrankungen führen Blutgerinnsel im Herzen zum Stillstand.

Ursachen von Venenleiden:

  • Erbliche Veranlagung (Vererbung eines mutierten Gens, das für die Gefäßstruktur verantwortlich ist).
  • Veränderungen des Hormonspiegels (während der Schwangerschaft und der Menopause kommt es zu einem Ungleichgewicht der Hormone, das den Zustand der Venen beeinflusst).
  • Diabetes mellitus (ständig erhöhte Glukosespiegel im Blut führen zu Schäden an den Venenwänden).
  • Missbrauch alkoholischer Getränke (Alkohol dehydriert den Körper, was zu einer Verdickung des Blutflusses mit weiterer Gerinnselbildung führt).
  • Chronische Verstopfung (erhöhter intraabdominaler Druck, erschwert das Abfließen der Flüssigkeit von den Beinen).

Krampfadern der unteren Extremitäten ist eine recht häufige Pathologie bei der weiblichen Bevölkerung. Diese Krankheit entwickelt sich aufgrund einer Abnahme der Elastizität der Gefäßwand, wenn der Körper starken Belastungen ausgesetzt ist. Ein zusätzlicher provokativer Faktor ist Übergewicht, das zu einer Dehnung des venösen Netzwerks führt. Die Zunahme des zirkulierenden Flüssigkeitsvolumens trägt zu einer zusätzlichen Belastung des Herzens bei, da seine Parameter unverändert bleiben.

Gefäßpathologie

Funktionsstörungen des Venensystems führen zu Thrombose und Krampfadilatation. Am häufigsten leiden Menschen an folgenden Krankheiten:

  • Krampfvergrößerung. Manifestiert durch eine Vergrößerung des Durchmessers des Gefäßlumens, nimmt jedoch seine Dicke ab und bildet Knoten. In den meisten Fällen ist der pathologische Prozess in den unteren Extremitäten lokalisiert, es sind jedoch Fälle von Läsionen der Ösophagusvenen möglich.
  • Atherosklerose Die Störung des Fettstoffwechsels ist durch die Ablagerung von Cholesterinbildungen im Gefäßlumen gekennzeichnet. Es besteht ein hohes Risiko für Komplikationen, wobei die Herzkranzgefäße besiegt werden, ein Herzinfarkt auftritt und die Besiedlung der Nebenhöhlen des Gehirns zur Entwicklung eines Schlaganfalls führt.
  • Thrombophlebitis Entzündung der Blutgefäße, wodurch das Lumen vollständig mit einem Blutgerinnsel verstopft wird. Die größte Gefahr besteht in der Migration eines Blutgerinnsels durch den Körper, da dies zu schwerwiegenden Komplikationen in jedem Organ führen kann.

Die pathologische Ausdehnung von Adern mit kleinem Durchmesser wird als Teleangiektasie bezeichnet. Sie äußert sich in einem langen pathologischen Prozess mit der Bildung von Sternchen auf der Haut.

Erste Anzeichen einer Schädigung des Venensystems

Die Schwere der Symptome hängt vom Stadium des pathologischen Prozesses ab. Mit dem Fortschreiten der Läsion des Venensystems nimmt der Schweregrad der Manifestationen zu, begleitet von dem Auftreten von Hautfehlern. In den meisten Fällen tritt die Verletzung des venösen Abflusses in den unteren Gliedmaßen auf, da sie die größte Belastung ausmachen.

Frühe Anzeichen einer schlechten Durchblutung der unteren Gliedmaßen:

  • erhöhtes venöses Muster;
  • erhöhte Müdigkeit beim Gehen;
  • Schmerz, begleitet von einem Quetschgefühl;
  • starke Schwellung;
  • Entzündung der Haut;
  • vaskuläre Deformität;
  • krampfartige Schmerzen.

In späteren Stadien kommt es zu einer erhöhten Trockenheit und Blässe der Haut, die durch das Auftreten von trophischen Geschwüren noch komplizierter werden kann.

Wie diagnostiziert man die Pathologie?

Die Diagnose von Erkrankungen, die mit der Störung des venösen Kreislaufs verbunden sind, ist die Durchführung folgender Studien:

  • Funktionstests (ermöglichen die Beurteilung des Gefäßpermeabilitätsgrades und des Zustands ihrer Klappen).
  • Duplex-Angioscanning (Echtzeit-Blutflussanalyse).
  • Dopplersonographie (lokale Bestimmung des Blutflusses).
  • Phlebographie (durch Injektion eines Kontrastmittels).
  • Phleboscintiographie (Einführung einer speziellen Radionuklidsubstanz ermöglicht die Identifizierung aller möglichen vaskulären Anomalien).

Untersuchungen zum Zustand oberflächlicher Venen werden durch visuelle Inspektion und Palpation sowie die ersten drei Methoden aus der Liste durchgeführt. Für die Diagnose tiefer Gefäße verwenden Sie die letzten beiden Methoden.

Das Venensystem hat eine relativ hohe Festigkeit und Elastizität, aber die Auswirkungen negativer Faktoren führen zu einer Störung seiner Aktivität und der Entwicklung von Krankheiten. Um das Risiko für Pathologien zu reduzieren, muss eine Person die Empfehlungen für einen gesunden Lebensstil beachten, die Belastung normalisieren und sich rechtzeitig von einem Spezialisten untersuchen lassen.

Venensystem

Das menschliche System Das große System des großen Kreises belebt das Blut im Herzen des Gewebes. Dieses Blut verwandelt sich durch Licht, angereichert mit Sauerstoff und gelangt in das System eines großen Kreises.

Ein falsches System führt Blut aus dem Körpergewebe im Herzen des Körpers zurück. Das Blut wird durch Sauerstoff aus dem Körper entfernt und durch die Lungenvenen zum Herzen zurückgeführt.

Die Venus beginnt mit kleinen Venen, entzündetem Blut aus Kapillaren. Außerdem bilden die Venen, die miteinander verschmelzen, größere Gefäße, während sie nicht die beiden Hauptvenen des Körpers bilden - die Venen im oberen und unteren Boden. Diese beiden Venen führen das Blut im Herzen. Etwa 65% des gesamten Blutvolumens wird in einem herkömmlichen System gespeichert.

UNTERSCHIEDE DES VENOSYSTEMS

Das große System eines großen Kreises in einem ähnlichen analogen arteriellen System. Es gibt jedoch einige wichtige Unterschiede.

Die Wände des Hofes - an den Wänden sind die Wände dicker als die der Wen, da es Arterien mit erhöhtem Wachstum gibt.
Tiefe - die meisten Arterien liegen tief im Körper und schützen sie so vor Schäden.
Das Netzhautsystem - das Blut, das vom Darm in die Venen des Magens gelangt - kehrt nicht immer zum Herzen zurück. Es legt die Ader der Adern des Systems, das durch das Blut der Kirche geht.
Unterschiede - wenn das Muster der Arterien eines großen Kreises für alle Menschen praktisch gleich ist, ist die Venus des großen Kreises unterschiedlich.

Krampfadern weisen erweiterte oder verdrehte Wirbelvenen auf. Abweichung durch Ventildefekte Wen.

Die Struktur der Vene: Anatomie, Merkmale, Funktionen

Eines der Bestandteile des menschlichen Kreislaufsystems ist eine Vene. Die Tatsache, dass eine solche Ader definitionsgemäß die Struktur und Funktion darstellt, muss jeder kennen, der seine Gesundheit überwacht.

Was ist eine Vene und ihre anatomischen Merkmale

Venen sind wichtige Blutgefäße, die das Blut zum Herzen fließen lassen. Sie bilden ein ganzes Netzwerk, das sich im Körper ausbreitet.

Sie werden mit Blut aus den Kapillaren aufgefüllt, von denen sie gesammelt und an den Hauptmotor des Körpers zurückgegeben werden.

Diese Bewegung beruht auf der Saugfunktion des Herzens und dem Vorhandensein von Unterdruck in der Brust, wenn die Atmung auftritt.

Anatomie enthält eine Reihe recht einfacher Elemente, die sich auf drei Ebenen befinden und deren Funktionen ausführen.

Eine wichtige Rolle bei der normalen Funktion der Ventile spielen.

Die Struktur der Wände der venösen Gefäße

Zu wissen, wie dieser Blutkanal aufgebaut ist, wird zum Schlüssel zum Verständnis der Adern im Allgemeinen.

Die Wände der Adern bestehen aus drei Schichten. Draußen sind sie von einer Schicht aus sich bewegendem und nicht zu dichtem Bindegewebe umgeben.

Seine Struktur ermöglicht es den unteren Schichten, Nahrung aufzunehmen, auch von umgebendem Gewebe. Auch die Befestigung der Venen ist auf diese Schicht zurückzuführen.

Die mittlere Schicht besteht aus Muskelgewebe. Es ist dichter als das Obermaterial, also formt und stützt er sie.

Aufgrund der elastischen Eigenschaften dieses Muskelgewebes können die Venen Druckverlusten standhalten, ohne ihre Integrität zu beeinträchtigen.

Das Muskelgewebe, aus dem die mittlere Schicht besteht, wird aus glatten Zellen gebildet.

In den Venen, die vom typlosen Typ sind, fehlt die mittlere Schicht.

Dies ist charakteristisch für die Venen, die durch die Knochen, die Meningen, die Augäpfel, die Milz und die Plazenta gehen.

Die innere Schicht ist ein sehr dünner Film aus einfachen Zellen. Es wird Endothel genannt.

Im Allgemeinen ähnelt die Struktur der Wände der Struktur der Wände der Arterien. Die Breite ist normalerweise größer und die Dicke der mittleren Schicht, die aus Muskelgewebe besteht, ist dagegen geringer.

Merkmale und Rolle der Venenklappen

Venenklappen sind Teil eines Systems, das den Blutfluss im menschlichen Körper ermöglicht.

Venöses Blut fließt trotz Schwerkraft durch den Körper. Um dies zu überwinden, wird die Muskel-Venen-Pumpe in Betrieb gesetzt, und die gefüllten Ventile lassen die eingespritzte Flüssigkeit nicht wieder entlang des Gefäßbetts zurückkehren.

Dank der Klappen bewegt sich das Blut nur in Richtung Herz.

Das Ventil ist die Falte, die aus der inneren Schicht aus Kollagen gebildet wird.

In ihrer Struktur ähneln sie Taschen, die sich unter dem Einfluss der Blutschwere schließen und an Ort und Stelle halten.

Ventile können ein bis drei Verschlüsse haben und befinden sich in kleinen und mittleren Adern. Große Schiffe verfügen nicht über einen solchen Mechanismus.

Ein Ausfall der Klappen kann zu Blutstauung in den Venen und zu unregelmäßigen Bewegungen führen. Die Ursache dieses Problems sind Krampfadern, Thrombosen und ähnliche Krankheiten.

Hauptaderfunktionen

Das menschliche Venensystem, dessen Funktionen im Alltag praktisch unsichtbar sind, wenn Sie nicht darüber nachdenken, sichert das Leben des Organismus.

Das Blut, das in allen Ecken des Körpers verteilt ist, ist schnell mit den Produkten aller Systeme und Kohlendioxid gesättigt.

Um all dies zu schaffen und Raum für mit nützlichen Substanzen gesättigtes Blut zu schaffen, arbeiten Venen.

Außerdem werden Hormone, die in den endokrinen Drüsen synthetisiert werden, sowie Nährstoffe aus dem Verdauungssystem mit Venen im ganzen Körper verteilt.

Die Vene ist natürlich ein Blutgefäß, sie ist also direkt an der Regulierung des Blutkreislaufs durch den menschlichen Körper beteiligt.

Dank ihr gibt es in jedem Teil des Körpers Blut, während die Paararbeit mit den Arterien erfolgt.

Struktur und Eigenschaften

Das Kreislaufsystem hat zwei kleine und große Kreise mit eigenen Aufgaben und Merkmalen. Das Schema des menschlichen Venensystems basiert genau auf dieser Einteilung.

Kreislaufsystem

Kleiner Kreis wird auch pulmonal genannt. Seine Aufgabe ist es, Blut aus der Lunge in den linken Vorhof zu bringen.

Die Lungenkapillaren haben einen Übergang zu den Venolen, die weiter zu großen Gefäßen zusammengeführt werden.

Diese Venen gehen in die Bronchien und Teile der Lunge, und bereits an den Eingängen zu den Lungen (Toren) sind sie zu großen Kanälen zusammengefasst, von denen zwei aus jeder Lunge gehen.

Sie haben keine Klappen, gehen aber jeweils von der rechten Lunge zum rechten Vorhof und von links nach links.

Großer Kreislauf des Blutkreislaufs

Der große Kreis ist für die Blutversorgung jedes Organs und Gewebes in einem lebenden Organismus verantwortlich.

Der Oberkörper ist an der oberen Hohlvene befestigt, die in Höhe der dritten Rippe in den rechten Vorhof mündet.

Dies liefert Blut solche Venen wie: Jugularis, Subclavia, Brachiocephalica und andere benachbarte.

Aus dem Unterkörper gelangt Blut in die Venen des Beckens. Hier konvergiert das Blut entlang der äußeren und inneren Venen, die auf Höhe des vierten Lendenwirbels in die untere Hohlvene konvergieren.

Bei allen Organen, die kein Paar haben (außer der Leber), gelangt das Blut durch die Pfortader zuerst in die Leber und dann von hier in die untere Hohlvene.

Merkmale der Bewegung von Blut durch die Venen

In einigen Stadien der Bewegung, zum Beispiel von den unteren Extremitäten, wird das Blut in den Venenkanälen gezwungen, die Schwerkraft zu überwinden, die im Durchschnitt fast eineinhalb Meter ansteigt.

Dies geschieht aufgrund der Atmungsphasen, wenn während der Inhalation ein Unterdruck in der Brust auftritt.

Der Druck in den Venen, die sich in der Nähe der Brust befinden, ist anfänglich atmosphärisch.

Zusätzlich wird das Blut durch die kontrahierenden Muskeln gedrückt, die indirekt am Blutkreislauf beteiligt sind und das Blut nach oben heben.

Schema des menschlichen Herzkreislaufsystems

Die wichtigste Aufgabe des Herz-Kreislauf-Systems ist die Versorgung der Gewebe und Organe mit Nährstoffen und Sauerstoff sowie die Entfernung von Stoffwechselprodukten von Zellen (Kohlendioxid, Harnstoff, Kreatinin, Bilirubin, Harnsäure, Ammoniak usw.). In den Kapillaren des Lungenkreislaufs kommt es zu einer Sauerstoffzufuhr und zur Entfernung von Kohlendioxid, und in den Gefäßen des großen Kreises tritt eine Nährstoffsättigung auf, wenn das Blut durch die Kapillaren des Darms, der Leber, des Fettgewebes und der Skelettmuskulatur strömt.

Das menschliche Kreislaufsystem besteht aus Herz und Blutgefäßen. Ihre Hauptfunktion besteht darin, die Bewegung des Blutes durch Arbeiten nach dem Prinzip der Pumpe sicherzustellen. Mit der Kontraktion der Herzkammern des Herzens (während ihrer Systole) wird das Blut aus dem linken Ventrikel in die Aorta und aus dem rechten Ventrikel in den Lungenrumpf ausgestoßen, worauf der große und der kleine Kreislauf (PCB und ICC) beginnen. Der große Kreis endet mit der unteren und oberen Hohlvene, durch die venöses Blut in den rechten Vorhof zurückkehrt. Ein kleiner Kreis - vier Lungenvenen, durch die mit Sauerstoff angereichertes arterielles Blut in den linken Vorhof fließt.

Ausgehend von der Beschreibung fließt arterielles Blut durch die Lungenvenen, was nicht mit dem alltäglichen Verständnis des menschlichen Kreislaufsystems korreliert (es wird angenommen, dass venöses Blut durch die Venen und arterielles Blut durch die Venen fließt).

Nach dem Durchtritt durch den Hohlraum des linken Vorhofs und des Ventrikels tritt Blut mit Nährstoffen und Sauerstoff durch die Arterien in die Kapillaren des BPC ein, wo Sauerstoff und Kohlendioxid zwischen den Zellen und den Zellen ausgetauscht werden, Nährstoffe abgegeben und Stoffwechselprodukte abtransportiert werden. Letztere gelangen mit dem Blutfluss in die Ausscheidungsorgane (Nieren, Lunge, Drüsen des Gastrointestinaltrakts, Haut) und werden aus dem Körper entfernt.

BKK und IKK sind sequentiell verbunden. Der Blutfluss in ihnen kann anhand des folgenden Schemas demonstriert werden: rechter Ventrikel → Lungenrumpf → kleine Kreisgefäße → Lungenvenen → linker Vorhof → linker Ventrikel → Aorta → große Kreisgefäße → untere und obere Vena cava → rechter Atrium → rechter Ventrikel.

Je nach Funktion und Struktur der Gefäßwand werden die Gefäße in folgende Bereiche unterteilt:

  1. 1. Stoßdämpfung (Gefäße der Kompressionskammer) - Aorta, Lungenrumpf und große elastische Arterien. Sie glätten die periodischen systolischen Wellen des Blutflusses: Sie mildern den hydrodynamischen Schlag des vom Herzen während der Systole ausgestoßenen Blutes und fördern das Blut während der Diastole der Herzkammern in die Peripherie.
  2. 2. Resistiv (Widerstandsgefäße) - kleine Arterien, Arteriolen, Metarteriolen. Ihre Wände enthalten eine große Anzahl glatter Muskelzellen, durch deren Reduktion und Entspannung sie schnell die Größe ihres Lumens verändern können. Durch den variablen Widerstand gegen den Blutfluss halten Widerstandsgefäße den arteriellen Druck (BP) aufrecht, regulieren den Blutfluss des Organs und den hydrostatischen Druck in den Gefäßen der Mikrogaskulatur (ICR).
  3. 3. Austauschschiffe des IKR. Durch die Wand dieser Gefäße erfolgt der Austausch organischer und anorganischer Substanzen, Wasser und Gase zwischen Blut und Gewebe. Der Blutfluss in den Gefäßen des ICR wird durch Arteriolen, Venolen und Perizyten reguliert - glatte Muskelzellen, die sich außerhalb der Vorkapillaren befinden.
  4. 4. Kapazitiv - Venen. Diese Gefäße haben eine hohe Dehnung, die bis zu 60–75% des zirkulierenden Blutvolumens (BCC) ablagern kann und den Rückfluss von venösem Blut zum Herzen reguliert. Die Venen der Leber, der Haut, der Lunge und der Milz haben die am meisten abscheidenden Eigenschaften.
  5. 5. Shunting - arteriovenöse Anastomosen. Wenn sie sich öffnen, wird arterielles Blut entlang des Druckgradienten in die Venen eingeleitet und die ICR-Gefäße umgangen. Dies tritt zum Beispiel auf, wenn die Haut abgekühlt wird, wenn der Blutfluss durch die arteriovenösen Anastomosen geleitet wird, um den Wärmeverlust unter Umgehung der Kapillaren der Haut zu reduzieren. Die Haut ist blass.

Das IWC dient dazu, das Blut mit Sauerstoff zu versorgen und Kohlendioxid aus den Lungen zu entfernen. Nachdem das Blut vom rechten Ventrikel in den Lungenrumpf gelangt ist, wird es in die linke und rechte Lungenarterie geschickt. Letztere sind eine Fortsetzung des Lungenrumpfes. Jede Lungenarterie, die durch die Tore der Lunge geht, teilt sich in kleinere Arterien auf. Letztere werden wiederum in den ICR (Arteriolen, Vorkapillaren und Kapillaren) transferiert. Im ICR wird venöses Blut arteriell. Letzteres kommt von den Kapillaren in die Venolen und Venen, die in 4 Lungenvenen (2 von jeder Lunge) übergehen und in den linken Vorhof fallen.

BKK dient zur Versorgung aller Organe und Gewebe mit Nährstoffen und Sauerstoff sowie zur Entfernung von Kohlendioxid und Stoffwechselprodukten. Nachdem Blut von der linken Herzkammer in die Aorta gelangt ist, wird es in den Aortenbogen geschickt. Von den letzteren trennen sich drei Äste (brachiozephaler Rumpf, gemeinsame Halsschlagader und linke Subclavia-Arterien), die die oberen Gliedmaßen, den Kopf und den Hals mit Blut versorgen.

Danach geht der Aortenbogen in die absteigende Aorta (Thorax- und Bauchregion) über. Letztere ist auf der Ebene des vierten Lendenwirbels in gemeinsame Hüftarterien unterteilt, die die unteren Extremitäten und Organe des kleinen Beckens versorgen. Diese Gefäße sind in äußere und innere Hüftarterien unterteilt. Die A. iliaca externa dringt in die Femoralarterie ein und versorgt die unteren Gliedmaßen mit arteriellem Blut unterhalb des Leistenbandes.

Alle Arterien, die zu den Geweben und Organen gehen, gehen in ihrer Dicke in die Arteriolen und weiter in die Kapillaren. Im ICR wird arterielles Blut venös. Die Kapillaren gehen in die Venolen und dann in die Venen. Alle Venen begleiten die Arterien und werden als Arterien bezeichnet, es gibt jedoch Ausnahmen (Pfortader und Jugularvenen). Wenn man sich dem Herzen nähert, vereinigen sich die Venen in zwei Gefäße - der unteren und der oberen Hohlvene, die in den rechten Vorhof fließen.

Manchmal gibt es eine dritte Runde des Blutkreislaufs - das Herz, das dem Herzen selbst dient.

Die schwarze Farbe im Bild zeigt das arterielle Blut und die weiße Farbe die Vene. 1. Arteria carotis communis 2. Aortenbogen 3. Die Lungenarterien. 4. Aortenbogen. 5. Die linke Herzkammer. 6. Die rechte Herzkammer. 7. Zöliakie-Rumpf 8. Obere Mesenterialarterie. 9. Untere Mesenterialarterie. 10. Vena cava senken. 11. Gabelung der Aorta. 12. Hüftarterien. 13. Beckengefäße. 14. Die Oberschenkelarterie. 15. V. femoralis. 16. Häufige Beckenvenen. 17. Pfortader. 18. Lebervenen. 19. Arteria subclavia. 20. Vena subclavia. 21. obere Vena cava 22. V. jugularis interna.

Schema der menschlichen Venen

Venen sind Blutgefäße, die Blut von den Kapillaren in Richtung Herz transportieren. Alle Venen bilden das Venensystem. Die Farbe der Venen hängt vom Blut ab. Das Blut ist in der Regel sauerstoffarm, enthält Zerfallsprodukte und ist dunkelrot.

Venenstruktur

Die Venen liegen durch ihre Struktur recht nahe an den Arterien, jedoch mit ihren eigenen Merkmalen, beispielsweise niedrigem Druck und niedriger Blutgeschwindigkeit. Diese Merkmale verleihen den Venenwänden einige Merkmale. Verglichen mit Arterien haben die Adern einen großen Durchmesser, eine dünne Innenwand und eine gut definierte Außenwand. Aufgrund seiner Struktur im venösen System beträgt die Gesamtblutmenge etwa 70%.

Die Venen unterhalb der Herzebene, zum Beispiel die Venen in den Beinen, haben zwei Venen-Systeme - oberflächlich und tief. Venen unterhalb des Herzniveaus haben beispielsweise die Venen in den Armen Klappen an der Innenfläche, die sich im Verlauf des Blutflusses öffnen. Wenn die Vene mit Blut gefüllt ist, schließt sich das Ventil, sodass das Blut nicht zurückfließen kann. Die am weitesten entwickelten Ventilapparaturen in Venen mit starker Entwicklung sind beispielsweise die Venen des Unterkörpers.

Oberflächliche Venen befinden sich unmittelbar unter der Hautoberfläche. Entlang der Muskulatur befinden sich tiefe Venen, die zu ca. 85% aus den unteren Extremitäten venöses Blut abfließen lassen. Tiefe Venen, die mit dem Oberflächlichen zusammenhängen, werden als kommunikativ bezeichnet.

Durch die Verschmelzung bilden die Venen große venöse Stämme, die in das Herz fließen. Die Venen sind in großer Zahl miteinander verbunden und bilden venöse Plexus.

Funktionen der Venen

Die Hauptfunktion der Venen besteht darin, den Abfluss von mit Kohlendioxid und Zersetzungsprodukten gesättigtem Blut sicherzustellen. Darüber hinaus gelangen verschiedene Hormone der endokrinen Drüsen und Nährstoffe aus dem Magen-Darm-Trakt durch die Venen in den Blutkreislauf. Venen regulieren die allgemeine und lokale Durchblutung.

Der Blutkreislauf durch die Venen und Arterien ist sehr unterschiedlich. In den Arterien dringt das Blut während der Kontraktion unter dem Druck des Herzens ein (etwa 120 mmHg), während der Druck in den Venen nur 10 mmHg beträgt. Art.

Es ist auch erwähnenswert, dass die Bewegung von Blut durch die Venen gegen die Schwerkraft erfolgt, in Verbindung mit diesem venösen Blut die Kraft des hydrostatischen Drucks erfährt. Bei einer Fehlfunktion der Klappe ist die Schwerkraftkraft manchmal so groß, dass sie den normalen Blutfluss stört. Gleichzeitig stagniert Blut in den Gefäßen und verformt diese. Danach werden die Venen Krampfadern genannt. Krampfadern haben ein aufgeblähtes Aussehen, was durch den Namen der Krankheit (aus dem lateinischen Varix, Gattung Varicis - "Schwellung") gerechtfertigt ist. Die Arten der Behandlung von Krampfadern sind heutzutage sehr umfangreich, vom Volksrat bis zum Schlaf in einer solchen Position, dass die Füße über dem Herzniveau liegen, bis zur Operation und Entfernung der Vene.

Eine andere Krankheit ist die Venenthrombose. Bei einer Thrombose in den Venen bilden sich Blutgerinnsel (Blutgerinnsel). Dies ist eine sehr gefährliche Krankheit, weil Blutgerinnsel, die sich gelöst haben, können durch das Kreislaufsystem in die Lungengefäße gelangen. Wenn ein Blutgerinnsel groß genug ist, kann es tödlich sein, wenn es in die Lunge gelangt.

Wo sind die Adern einer Person?

Wo sind die Adern einer Person?

Venen sind Blutgefäße, die dem Herzen Blut zuführen. Mit Hilfe von Venen und Kapillaren wird Blut, das nicht mit Sauerstoff angereichert ist, aus den Organen entfernt. Sie befinden sich im Rumpf, in den Gliedmaßen und im menschlichen Kopf. Die größten Venen verlaufen parallel zur Wirbelsäule, Knochen der oberen und unteren Extremitäten.

Das wichtigste für die menschliche Aktivität sind die Venen jugularis, pulmonal, portal, oben und unten hohl, femoralis und poplitea. Wien studiert die Phlebologie. Wenn sich die Venen mit Blutgerinnseln überlappen, können einzelne Gewebe, Organe und Extremitäten sterben.

Dilatierte Venen stören die normale Funktion des Körpers.

Kreise des menschlichen Blutkreislaufs - das Schema des Kreislaufsystems

In Analogie zum Wurzelsystem von Pflanzen transportiert das Blut in einer Person Nährstoffe durch unterschiedlich große Gefäße.

Neben der Ernährungsfunktion wird an dem Transport von Luftsauerstoff gearbeitet - der zelluläre Gasaustausch wird durchgeführt.

Kreislaufsystem


Wenn Sie sich das Schema der Blutzirkulation im gesamten Körper anschauen, ist sein zyklischer Weg offensichtlich. Wenn Sie den plazentaren Blutfluss nicht berücksichtigen, gibt es einen kleinen Zyklus, der die Atmung und den Gasaustausch von Geweben und Organen ermöglicht und die Lunge des Menschen sowie den zweiten großen Zyklus, der Nährstoffe und Enzyme trägt, beeinflusst.

Die Aufgabe des Kreislaufsystems, das dank der wissenschaftlichen Experimente des Wissenschaftlers Harvey (im 16. Jahrhundert entdeckte er die Blutkreise) bekannt wurde, besteht im Allgemeinen darin, die Förderung von Blut- und Lymphzellen durch die Gefäße zu organisieren.

Kreislaufsystem


Von oben gelangt venöses Blut aus der rechten Vorhofkammer in den rechten Herzventrikel. Venen sind mittelgroße Gefäße. Das Blut strömt portionsweise aus dem Hohlraum des Herzventrikels durch ein in Richtung Lungenrumpf öffnendes Ventil.

Von dort gelangt das Blut in die Lungenarterie, und so weit der Hauptmuskel des menschlichen Körpers entfernt ist, fließen die Venen in die Arterien des Lungengewebes und werden in ein vielfaches Netz von Kapillaren verwandelt. Ihre Aufgabe und Hauptaufgabe ist es, Gasaustauschprozesse durchzuführen, bei denen Alveolozyten Kohlendioxid aufnehmen.

Da der Sauerstoff durch die Venen verteilt wird, werden die arteriellen Merkmale für den Blutfluss charakteristisch. Entlang der Venolen nähert sich das Blut den Lungenvenen, die sich in den linken Vorhof öffnen.

Großer Kreislauf des Blutkreislaufs


Lassen Sie uns den großen Blutkreislauf verfolgen. Startet einen großen Kreislauf des linken Herzventrikels, in den der mit O angereicherte arterielle Fluss eintritt.2 und abgereichertes CO2, die aus dem Lungenkreislauf gespeist wird. Wohin geht das Blut aus dem linken Ventrikel des Herzens?

Nach dem linken Ventrikel drückt die neben ihr liegende Aortenklappe arterielles Blut in die Aorta. Es verteilt sich in den Arterien o2 in hoher Konzentration. Wenn Sie sich vom Herzen entfernen, ändert sich der Durchmesser des Arterienschlauchs - er nimmt ab.

Von den Kapillargefäßen wird das gesamte CO gesammelt.2, und ein großer Kreis fließt in die Vena cava. Von diesen gelangt das Blut wieder in den rechten Vorhof, dann in den rechten Ventrikel und in den Lungenrumpf.

Damit endet der große Kreislauf des rechten Atriums. Und die Frage - woher kommt das Blut aus dem rechten Ventrikel des Herzens, die Antwort - in der Lungenarterie.

Schema des menschlichen Kreislaufsystems

Das unten beschriebene Schema mit Pfeilen des Blutkreislaufvorgangs zeigt kurz und deutlich die Abfolge der Durchführung des Blutbewegungspfads im Körper und zeigt die Organe an, die an dem Vorgang beteiligt sind.

Menschliche Kreislauforgane

Dazu gehören Herz und Blutgefäße (Venen, Arterien und Kapillaren). Betrachten Sie das wichtigste Organ im menschlichen Körper.

Das Herz ist ein sich selbst regulierender, sich selbst regulierender, sich selbst korrigierender Muskel. Die Größe des Herzens hängt von der Entwicklung der Skelettmuskulatur ab - je höher die Entwicklung, desto größer das Herz. Entsprechend der Struktur des Herzens hat 4 Kammern - 2 Ventrikel und 2 Vorhöfe, und im Perikard platziert. Die Herzkammern zwischen sich und zwischen den Vorhöfen sind durch spezielle Herzklappen getrennt.

Verantwortlich für die Auffüllung und Sättigung des Herzens mit Sauerstoff sind die Herzkranzarterien, oder wie sie die Herzkranzgefäße genannt werden.

Die Hauptfunktion des Herzens besteht darin, die Pumpe im Körper auszuführen. Ausfälle haben mehrere Gründe:

  1. Unzureichender / übermäßiger Blutfluss.
  2. Verletzungen des Herzmuskels.
  3. Äußeres Quetschen

Zweitens im Kreislaufsystem sind Blutgefäße.

Lineare und volumetrische Blutflussgeschwindigkeit

Verwenden Sie bei der Betrachtung der Geschwindigkeitsparameter von Blut das Konzept der linearen und volumetrischen Geschwindigkeiten. Es gibt eine mathematische Beziehung zwischen diesen Begriffen.

Wo bewegt sich das Blut am schnellsten? Die lineare Geschwindigkeit des Blutflusses ist direkt proportional zur volumetrischen Rate, die je nach Gefäßtyp variiert.

Die höchste Blutflussgeschwindigkeit in der Aorta.

Wo bewegt sich das Blut mit der niedrigsten Geschwindigkeit? Die niedrigste Geschwindigkeit liegt in den hohlen Adern.

Der Zeitpunkt der vollständigen Durchblutung

Für einen Erwachsenen, dessen Herz etwa 80 Schnitte pro Minute erzeugt, ist das Blut in 23 Sekunden vollständig und verteilt 4,5-5 Sekunden auf einen kleinen Kreis und 18-18,5 Sekunden auf einen großen.

Die Daten werden durch eine erfahrene Methode bestätigt. Der Kern aller Forschungsmethoden liegt im Prinzip der Kennzeichnung. Eine nachverfolgbare Substanz wird in die Vene eingebracht, die für den menschlichen Körper nicht charakteristisch ist, und ihr Ort wird dynamisch festgelegt.

Dies gibt an, wie viel der Stoff in der gleichnamigen Vene auf der anderen Seite erscheinen wird. Dies ist die Zeit für einen vollständigen Blutkreislauf.

Fazit

Der menschliche Körper ist ein komplexer Mechanismus mit verschiedenen Arten von Systemen. Die Hauptrolle für das reibungslose Funktionieren und die Unterstützung des Lebens spielt das Kreislaufsystem. Daher ist es sehr wichtig, seine Struktur zu verstehen und Herz und Blutgefäße in perfekter Reihenfolge zu halten.

Phlebologie

Überschriften

Aktuelle Themen

Beliebt

  • Anatomie der Venen des menschlichen Fußes - 62.651 Ansichten
  • Laserbehandlung von Krampfadern - 19.327 views
  • Apfelessig für Krampfadern - 18,966 Ansichten
  • Endovenöse Laser-Venenbehandlung (EVLO) - 17.727 Ansichten
  • Krampfadern des kleinen Beckens - 13,814 views
  • „Persönlicher Phlebologe: 100% ige Siegesgarantie über Krampfadern“ - 11,411 Ansichten
  • Blutung aus Krampfadern der unteren Extremitäten - 11,386 Ansichten
  • Kompressionsstrickware: Merkmale der Wahl - 10,480 Ansichten
  • Kompression Sklerotherapie - 8.922 Ansichten
  • Können Krampfadern mit Blutegeln behandelt werden? - 8,060 Ansichten

Anatomie der menschlichen Venen

Die Anatomie des Venensystems der unteren Extremitäten zeichnet sich durch große Variabilität aus. Eine wichtige Rolle bei der Auswertung der instrumentellen Untersuchungsdaten bei der Wahl der richtigen Behandlungsmethode spielt die Kenntnis der einzelnen Merkmale der Struktur des menschlichen Venensystems.

Im Venensystem der unteren Extremitäten gibt es ein tiefes und oberflächliches Netzwerk.

Das tiefe Venennetzwerk wird durch gepaarte Adern dargestellt, die die Arterien der Finger, Füße und der Tibia begleiten. Die V. tibialis anterior und posterior verschmelzen im Femur-Popliteal-Kanal und bilden eine ungepaarte Poplitealvene, die in den kräftigen Stamm der Femurvene übergeht (v. Femoralis). Noch vor dem Übergang in die V. iliaca externa (v. Iliaca externa) fließen 5–8 perforierende Venen und die tiefe Vene des Oberschenkels (v. Femoralis profunda), die Blut aus den Muskeln des Oberschenkelrückens trägt, in die Femoralvene. Letztere hat zusätzlich direkte Anastomosen mit der V. iliaca externa (v. Iliaca externa) mittels intermediärer Venen. Im Falle eines Verschlusses der Vena femoralis durch das System der tiefen Vene des Oberschenkels kann sie teilweise in die V. iliaca externa (v. Iliaca externa) fließen.

Das oberflächliche Venennetz befindet sich im Unterhautgewebe oberhalb der oberflächlichen Faszie. Es wird durch zwei Vena saphena dargestellt - eine große Vena saphena (v. Saphena magna) und eine kleine Vena saphena (v. Saphena parva).

Die V. saphena magna (V. saphena magna) geht von der inneren Randvene des Fußes aus und erhält durchgängig viele subkutane Äste des oberflächlichen Netzes von Oberschenkel und Tibia. Vor dem inneren Knöchel erhebt er sich am Schienbein und umrundet den hinteren Kondylus des Oberschenkels, steigt bis zur ovalen Öffnung im Leistenbereich. Auf dieser Ebene fließt es in die V. femoralis. Die V. saphena magna gilt als die längste im Körper. Sie hat 5-10 Ventilpaare und einen Durchmesser von 3 bis 5 mm. In einigen Fällen kann die große Vena saphena des Oberschenkels und des Unterschenkels durch zwei oder sogar drei Stämme dargestellt werden. Im obersten Teil der Vena saphena magna, in der Leistenregion, fließen 1–8 Nebenflüsse ein, oft sind dies drei Zweige, die keine praktische Bedeutung haben: äußeres Sexualleben (v. Pudenda externa super ficialis), oberflächliches Epigastrium (v. Epigastica superficialis) und oberflächliche Vene, die den Beckenknochen umgibt (v. cirkumflexia ilei superficialis).

Die kleine Vena saphena (v. Saphena parva) beginnt an der äußeren Randvene des Fußes und sammelt hauptsächlich Blut aus der Sohle. Nachdem er einen äußeren Knöchel hinterher abgerundet hat, steigt er auf der Rückseite eines Schienbeins zu einer Kniekehle auf. Von der Mitte des Beines ausgehend befindet sich die kleine Vena saphena zwischen den Lagen der Faszie des Beines (Kanal NI Pirogov), begleitet von dem N. cutaneus medialis der Wade. Daher ist die Krampfadilatation der Vena saphena maga weitaus seltener als die der saphena groß. In 25% der Fälle geht die Vene in der Poplitea-Fossa tiefer durch die Faszie und fließt in die Popliteal-Vene. In anderen Fällen kann sich die kleine Vena saphena über die Kniekehle erstrecken und in die Oberschenkelvene saphena oder in die tiefe Vene des Oberschenkels fallen. Daher muss der Chirurg vor der Operation genau wissen, wo die kleine Vena saphena in die tiefe Vene fällt, um einen gezielten Einschnitt direkt über der Fistel vorzunehmen. Beide Saphenavenen anastomosieren sich bei direkten und indirekten Anastomosen weitgehend miteinander und sind mittels zahlreicher perforierender Venen mit tiefen Venen des Unterschenkels und des Oberschenkels verbunden. (1).

Fig.1. Anatomie des Venensystems der unteren Extremitäten

Perforator (kommunikative) Venen (vv. Perforantes) verbinden tiefe Venen mit oberflächlichen Venen (Abb. 2). Die meisten perforierenden Venen haben supra-fasziale Klappen, aufgrund derer sich Blut von oberflächlichen zu tiefen Venen wandert. Es gibt direkte und indirekte perforierende Venen. Die geraden Linien verbinden direkt die Hauptstämme der oberflächlichen und tiefen Venen, die indirekten verbinden die subkutanen Venen indirekt, d. H. Sie fließen zuerst in die Muskelvene, die dann in die tiefe Vene fließt. Normalerweise sind sie dünnwandig und haben einen Durchmesser von ca. 2 mm. Wenn Ventile unzureichend sind, verdicken sich ihre Wände und der Durchmesser nimmt um das 2-3-fache zu. Indirekte Perforationsvenen überwiegen. Die Anzahl der Perforationsvenen an einer Extremität variiert zwischen 20 und 45. Im unteren Beindrittel, wo keine Muskeln vorhanden sind, dominieren direkte Perforationsvenen, die entlang der medialen Seite der Tibia (Coquette-Zone) liegen. Etwa 50% der kommunikativen Venen des Fußes haben keine Klappen, so dass das Blut vom Fuß aus beiden tiefen Venen in die Oberfläche und umgekehrt fließen kann, abhängig von der funktionellen Belastung und den physiologischen Bedingungen des Abflusses. In den meisten Fällen fließen perforierende Venen von den Nebenflüssen weg und nicht vom Stamm der V. saphena magna. In 90% der Fälle kommt es zu einem Versagen der Perforationsvenen der medialen Oberfläche des unteren Beindrittels.

Fig.2. Verbindungsvarianten der oberflächlichen und tiefen Venen der unteren Extremitäten nach S. Kubik.

1 - Haut; 2 - subkutanes Gewebe; 3 - Oberflächenfaszienblatt; 4 - faserige Brücken; 5 - Vagina des Bindegewebes saphenöse Hauptvenen; 6 - eigene Faszie des Beines; 7 - Saphenavene; 8 - kommunikative Ader; 9 - direkte Perforationsvene; 10 - indirekte Perforationsvene; 11 - Bindegewebevagina tiefer Gefäße; 12 - Muskelvenen; 13 - tiefe Adern; 14 - tiefe arterie.


style = "display: block"
data-ad-format = "fluid"
data-ad-layout = "Nur-Text"
data-ad-layout-key = "- gt-i + 3e-22-6q"
data-ad-client = "ca-pub-1502796451020214"
data-ad-slot = "6744715177">